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1.1 Ultraproducts

Let L be a first order predicate language. Then M =< M, cM, fM, RM >,
an L-structure is a nonempty set M with interpretations for function, relation
and constant symbols. Here we use a one-sorted structure, but this could be
extended to a many-sorted structure.

Definition 1. Suppose we have a set Mi (i ∈ I) of L-structures, then the
product of these structures is M =

∏
iMi, which has the natural (pointwise)

L-structure, that is, cM = (cMi)i, fM((a1
i )i, · · · , (ani )i) = (fMi(a1

i , · · · , ani ))i
and ((a1

i )i, · · · , (ani )i) ∈ RM iff (a1
i , · · · , ani ) ∈ RMi for all i ∈ I.

In general, a product has a different theory to that of the structures in the
set Mi. For example a product of fields is just a ring. Note also that if ϕ
is an atomic formula then

∏
iMi |= ϕ((a1

i )i, · · · , (ani )i) iff {i ∈ I : Mi |=
ϕ(a1

i , · · · , ani )} = I. In particular this shows that if J ⊆ I then the restiction
function (ai)i∈I → (ai)i∈J is a surjective homomorphism from

∏
i∈IMi to∏

i∈JMi. We will define next the notion of reduced product which generalizes
the notion of product in a sense that if ϕ is atomic then the reduced product
satisfies ϕ((a1

i )i, · · · , (ani )i) iff {i ∈ I :Mi |= ϕ(a1
i , · · · , ani )} is “large” inside I.

Let us first define a notion of “large” inside I.

Definition 2. A filter on a set I is a subset F ⊆ P(I) such that I ∈ F , ∅ /∈ F ,
if J,K ∈ F then J ∩K ∈ F and if J ⊆ K ⊆ I and J ∈ F then K ∈ F . So,
a filter is non-empty, does not contain the empty set, the intersection of two
elements in the filter is in the filter and anything above an element in the filter
is in the filter.

We sometimes refer to the elements of a filter as “large” sets.

Definition 3. An ultrafilter, U is a maximal filter on I with respect to inclu-
sion. Equivalently, for every J ⊆ I either J ∈ U or Jc ∈ U (where Jc is the
complement of J), equivalently if J ∪K ∈ U then J ∈ U or K ∈ U .
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Every filter can be extended to an ultrafilter; but you should not expect to be
able to specify any non-principal ultrafilter completely since existence of such
is just a bit weaker than the Axiom of Choice/Zorn’s Lemma.

Definition 4. An ultrafilter is principal if it is of the form {J ⊆ I : i0 ∈ J} for
some i0 ∈ I.

Note that an ultrafilter is nonprincipal if and only if it contains the Fréchet filter
F = {J ⊆ I : I \ J is finite}.

Define a relation ∼ = ∼F (for a given filter F) on
∏
iMi by (ai)i ∼ (bi)i

if and only if {i ∈ I : ai = bi} ∈ F , where (ai)i, (bi)i ∈
∏
iMi (i.e. two

elements are equivalent if their coordinates are equal on a “large” set). Let∏
iMi/F be the quotient

∏
iMi/∼. Note that ∼ is indeed an equivalence rela-

tion. There is a natural induced structure on M∗ =
∏
iMi/∼, more precisely:

cM
∗

= (cMi)i/ ∼; fM
∗
((a1

i )i/ ∼, · · · , (ani )i/ ∼) = (fMi(a1
i , · · · , ani ))i/ ∼;

((a1
i )i/ ∼, · · · , (ani )i/ ∼) ∈ RM

∗
iff {i ∈ I : (a1

i , · · · , ani ) ∈ RMi} ∈ F .
Note that this is well defined. So we get a well defined L-structure on M∗ =∏
iMi/F .

Definition 5. The structureM∗ defined above is the reduced product of theMi

with respect to the filter F . If F is an ultrafilter then thisM∗ is the ultraproduct
of theMi. If theseMi are all the same structureM then this is called a reduced
power of M and if F is an ultrafilter then M∗ is called an ultrapower of M.

Definition 6. Let the formula ϕ = ϕ(x1, . . . , xn) of L be a formula with free
variables among x1, . . . , xn = x̄. It is said to be positive primitive (pp) if it has
the form ∃ȳ

∧n
i=1 θi(x̄, ȳ) where each θi is an atomic formula.

Theorem 1 ( Los’ Theorem). Take structures Mi(i ∈ I) and a filter F on I.
Let M∗ =

∏
iMi/F and take a positive primitive formula ϕ(x1, . . . , xn). Let

a1, . . . , an ∈M∗ (aj = (aji )i/ ∼).
i) M∗ |= ϕ(a1, . . . , an) if and only if {i ∈ I :Mi |= ϕ(a1

i , . . . , a
n
i )} ∈ F . (Note

that this is not true with negations in ϕ).
ii) if F is an ultrafilter then the first part is true for all formulas ϕ

Proof. First check that it works for atomic formulas and then use induction on
the complexity of the formula ϕ. For i) use the connective ∧ and existential
quantifier ∃ and the proof works using only the properties of filters. For ii) the
induction step also works for the conective ¬ but it requires the fact that F is
an ultrafilter.

If U is principal, say U = {J ⊆ I : i0 ∈ J}, then
∏
iMi/U ' Mi0 so, even

though we usually forget to say so, the ultrafilters we use will be non principal.

Examples

1. Let L0 be the language containing only the equality relation. In this case
an L0-structure is just a set. Let Mn = {0, 1, . . . , n − 1} (n ≥ 1). So
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I = P (the set of positive integers). Take F to be the Fréchet filter (the
set of all cofinite sets of P). Form

∏
n≥1Mn/F , a set of cardinality 2ℵ0

(because all equivalence classes are countable). Clearly (an)n ∼ (bn)n
if they agree on all but finitely many coordinates. Now extend F to an
ultrafilter U on P. The equivalence relation defined by U is coarser than the
one defined by F so there is a natural surjection

∏
nMn/F →

∏
Mn/U .

This map is a homomorphism. Note U must be non principal. Also note
that

∏
nMn/U is infinite. To see this let σ≥n be the sentence (i.e. no

free variables) which says that there are at least n elements. We see that
{i : Mi |= σ≥n} ∈ F ⊆ U . So, by  Los’ Theorem

∏
iMi/U |= σ≥n. This

is true for every n, so
∏
iMi/U is infinite.

2. Let F ∗ =
∏
n Fpn/U for some prime p, where Fpn is the finite field with pn

elements, and some ultrafilter U on P. Then F ∗ is an infinite field of char-
acteristic p (as each Fpn has characteristic p) and F ∗ is not algebraically
closed. To see this let σ be the sentence ∃y0, y1¬∃x(x2 + y1x + y0 = 0).
Then Fpn |= σ for each Fpn (Fpn has a proper quadratic extension), so
F ∗ |= σ and hence F ∗ is not algebraically closed.

3. Let F ∗ =
∏
p Fp/U where Fp is the prime field of characteristic p. Then,

by  Los’ Theorem, F ∗ does not have characteristic p for any p, hence it has
characteristic 0.
Question - Does −1 have a square root in F ∗?
Answer - It depends on U (going from a filter to an ultrafilter uses the
axiom of choice, so we do not know exactly what is in the ultrafilter from
its construction).

4. Let F ∗ =
∏
p F̃p/U (where F̃p is the algebraic closure of Fp). Then F ∗

is an algebraically closed field of characteristic 0 (hence can be identified
with C since it has, in fact, cardinality 2ℵ0).

1.2 Functoriality

Consider (L-Struct) the category in which objects are L-structures and mor-
phisms are homomorphisms. Consider also the category (L-Struct)I in which
objects are I-indexed families of L-structures and morphisms are I-indexed
families of homomorphisms between the coordinates of the objects. The re-
duced power with respect to a given filter F on I induces a functor from
(L-Struct)I to (L-Struct). More precisely the functor assigns to each family
(Mi)i the reduced power

∏
iMi/F and to each morphism (αi :Mi → Ni)i be-

tween the objects (Mi)i and (Ni)i is assigned the homomorphism
∏
i αi/F

between
∏
iMi/F and

∏
iNi/F defined by (ai)i/ ∼ 7→ (αi(ai))i/ ∼. We

need to check that
∏
i αi/F is in fact a homomorphism, but that is a con-

sequence of  Los’ Theorem, in fact by  Los’ Theorem if ϕ is an atomic for-
mula we have

∏
iMi/F |= ϕ((a1

i )i/ ∼, · · · , (ani )i/ ∼) iff {i ∈ I : Ni |=
ϕ(a1

i , · · · , ani )} ∈ F and
∏
iNi/F |= ϕ((αi(a1

i ))i/ ∼, · · · , (αi(ani ))i/ ∼) iff
{i ∈ I : Ni |= ϕ(αi(a1

i ), · · · , αi(ani ))} ∈ F thus we get what we need because F
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is closed under upwards inclusion. Note that the same argument also shows that
embeddings are sent to embeddings and if F is an ultrafilter then elementary
embeddings are also preserved. It is trivial to check that the functor preserves
composition of morphisms.
We can also trivially define a functor in the reverse direction by sending M to
(M)i and (α : M → N ) to (α : M → N )i and composing these two functors
we get a functor from (L-Struct) to (L-Struct) that assigns to each L-structure
the corresponding reduced power with respect to F . Thus homomorphisms
and embeddings between L-structures induce homomorphisms and embeddings
between the corresponding reduced powers and the same for elementary embed-
dings in the case of ultrapowers.

1.3 Direct Limits

These are also referred to as directed colimits and are denoted lim−→.

Definition 7. An upwards directed poset is a poset such that for any two ele-
ments, x, y in the poset there is another element, z in the poset greater than or
equal to both x and y.

Definition 8. Let P be a(n upwards directed) poset. P can be regarded as a
category, with objects the elements of P and a (single) arrow from x to y exactly
if x ≤ y. A P -diagram in a category C is a functor P → C. The term is also
used to refer to the image of such a functor.

For example : Cx → Cz ← Cy is a directed diagram in a category, as is C0 →
C1 → . . . (indexed by the natural numbers).

Definition 9. A cocone on such a diagram is an object C together with a
map Cx → C for every Cx in the diagram, and such that all triangles in the
resulting diagram commute (see below). The directed colimit, if there is one, is
a universal cocone on the diagram and is denoted lim−→i∈P (Ci). It is unique up
to isomorphism.

The category of L-structures has direct limits. The reduced power
∏
iMi/F is

the direct limit of the diagram, indexed by Fop, which takes J ∈ F to
∏
i∈JMi

and which takes the (opposite of the) inclusion J ⊆ J ′ to the projection from∏
i∈J′Mi to

∏
i∈JMi. This diagram is directed since F is closed under inter-

section:
∏
i∈JMi →

∏
i∈J∩KMi ←

∏
i∈KMi where both maps are projection

maps and J,K ∈ F .
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2.1 Direct Limits

Definition 10. In a category C a directed diagram is a collection of objects

(Ci)i, indexed by a poset (I,≤), and a collection of maps between them (Ci
fij−−→
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Cj)i≤j such that for each pair i, j of elements of I there is k ∈ I with i, j ≤ k,
hence for every pair, Ci, Cj, of objects in the diagram there is an object Ck in
the diagram and there are the morphisms fik and fjk. A cocone is given by an
object D and maps gi : Ci → D such that gj = gifij whenever i ≤ j. This
cocone is a direct limit if it has the property that for every cocone, given by data
D′, (g′i)i, there is a unique map h : D → D′ such that hgi = g′i for every i.

If C is the category of L-structures (or a suitable subcategory thereof), the di-
rect limit is, as a set, lim−→(Ci) = ∪̇iCi/ ∼ where, if c ∈ Ci and d ∈ Ck then c ∼ d
if these elements are identified in Cl for some l ≥ i, k (i.e. if filc = fkld). The
L-structure is defined on this set in the obvious way: every element in the direct
limit is the image of an element in the diagram, indeed, any finitely many ele-
ments have, since the diagram is directed, pre-images in some Ci. For example,
if C is the category of Z-modules, then, lim−→(Z ×2−−→ Z ×3−−→ Z ×4−−→ Z→ . . . ) = Q.
The category of L-structures has direct limits, but the full subcategory of mod-
els of T , Mod(T ), need not be closed under direct limits in the category of
L-structures. For example, Mod({∃x, y(x 6= y)}) i.e. sets with at least two ele-
ments.
{0, 1} → {0, 1, 2} → {0, 1, 2, 3} → {0, 1, 2, 3, 4} → . . .
0, 1 7→ 1

0, 1, 2 7→ 2
0, 1, 2, 3 7→ 3 . . .

Then the direct limit is a one point set, which is outside the definable subcate-
gory. However, if T is a set of formulas of the form ∀∃ ∧ θi with the θi atomic
then Mod(T ) is closed under direct limits. For example consider the formula
∀x̄∃ȳθ1(x̄, ȳ) with θ1 an atomic formula. Take ā from lim−→Ci. There will be a
preimage in the system, say ā′ from Ci. There will be b̄′ in Cj for some j ≥ i
such that θ1(ā′, b̄′) holds in Cj so, since morphisms preserve atomic formulas,
θ1(ā, Im(b̄′)) holds in the direct limit, i.e. we have preservation under direct
limits.
Ultraproducts are direct limits of products. Take (Mi)i∈I (L-structures) and
a filter F on I. Form the direct system of products over J ∈ Fop,

∏
i∈JMi,

where Fop is F directed by reverse inclusion. Then
∏
JMi →

∏
KMi if K ⊆ J

gives a directed system and lim−→J∈Fop
(
∏
i∈JMi) =

∏
iMi/F .

In the other direction we have the following proposition.

Definition 11. We say that an embedding f : M → N is pure if for ev-
ery pp-formula ϕ and a1, · · · , an ∈ M we have M |= ϕ(a1, · · · , an) iff N |=
ϕ(f(a1), · · · , f(an)).

Proposition 1. Let (Mi)i∈I be a directed diagram of L-structures and let F be
a filter on I containing the Fréchet filter generated by {{j ∈ I : j ≥ i} : i ∈ I}.
(Note that this set has the finite intersection property, so extends to a filter).
Then there is a pure embedding from the direct limit of the diagram to the reduced
product with respect to F .

Proof. Let Ml be the direct limit of the diagram and let M∗ =
∏
iMi/F .

First we will show that M∗ is a cocone for the diagram. Let fij denote the
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homomorphism betweenMi andMj if i ≤ j and let fi denote the limit homo-
morphism from Mi to Ml. Define gi :Mi →M∗ by gi(a) = (fij(a))j≥i/ ∼ (if
j < i define gi(a)j arbitrarily, this will not change the equivalence class of the
image because {j ∈ I : j ≥ i} ∈ F). To see that these form a cocone we need to
check that gk = glfkl, in fact gl(fkl(a)) = (flj(fkl(a)))j≥l/ ∼= (fkj(a))j≥l/ ∼=
(fkj(a))j≥k/ ∼= gk(a). Thus by definition of direct limit there is a unique
homomorphism h : Ml → M∗ such that the resulting system is comutative.
Therefore, if ϕ is a pp-formula then:

(*) Ml |= ϕ(ā)⇒M∗ |= ϕ(h(ā)) for every ā ∈M l.

But the reverse implication is also true, making h a pure embedding. To
see this, let ā be a tuple in Ml, so there exist i and a1, · · · , an ∈ Mi such
that ā = (fi(a1), · · · , fi(an)). Recall that we have hfi = gi thus h(ā) =
h(fi(a1), · · · , fi(an)) = (gi(a1), · · · , gi(an)) = ((fij(a1))j≥i/ ∼, · · · , (fij(an))j≥i/ ∼
). Now if we assume the right side of (∗), for j large enough we get Mj |=
ϕ(fij(a1), · · · , fij(an)) and applying the homomorphism fj we get
Ml |= ϕ(fjfij(a1), · · · , fjfij(an))⇔Ml |= ϕ(fi(a1), · · · , fi(an))⇔
Ml |= ϕ(ā).

Note that in this proposition we can choose F to be an ultrafilter.

2.2 Boolean Algebras and Stone Spaces

Definition 12. A Boolean algebra, B is a lattice (with meet, ∧, and join, ∨.
operations) with 0, 1 (a bottom and a top element) in which every element has
a complement and in which each of the lattice operations is distributive over the
other.

For example the power set, P(I), of a set I, with the usual union, intersection
and complementation and with top element I and bottom element ∅ is a Boolean
algebra.

Definition 13. A filter, F in a boolean algebra B is a subset of B such that if
a, b ∈ F then a∧ b ∈ F (this corresponds to a∩ b), if a ≤ b ∈ B then b ∈ F and
also 1 ∈ F and 0 /∈ F . (The ordering on a boolean algebra is defined by a ≤ b
iff a ∧ b = a, equivalently if a ∨ b = b.)

This definition generalises the previous definition of a filter.

Definition 14. An ultrafilter is a maximal filter. Equivalently, F is an ultra-
filter if and only if for all b ∈ B either b ∈ F or bc ∈ F . Alternatively, for all
a, b ∈ B if a ∨ b ∈ F then a ∈ F or b ∈ F .

Definition 15. The Stone space of B, S(B) is a topological space with points
the ultrafilters, F , in B and a basis of open sets Ob = {F : b ∈ F} for b ∈ B,
(alternatively, {F : b /∈ F} is the same collection of sets).
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Since S(B) = Ob∪̇Obc , Ob is clopen and so S(B) is a totally disconnected space.
Clearly S(B) is Hausdorff (given two distinct filters we can find an element in
the one which is not in the other) and compact. For, if S(B) =

⋃
iObi

(an
open cover with no finite subcover) consider the set of bci . This set has the finite
intersection property (i.e. non-zero meet) since bc1 ∧ · · · ∧ bcn = 0 implies that
b1∨· · ·∨bn = 1 so then S(B) = Ob1 ∪· · ·∪Obn . Contradiction - this would then
be a finite subcover. So there is a filter and hence an ultrafilter, F , (by Zorn’s
Lemma) containing all the bci , so F ∈ S(B) \

⋃
iObi

. Contradiction. Therefore
S(B) is compact.
We have therefore that the Stone space, S, is a compact Hausdorff space with
a basis of clopen sets.

Let B(S) be the Boolean algebra of compact open sets of S. Then B(S(B)) ' B
and S(B(S)) ' S. This is called Stone duality - it is a contravariant equivalence
between the category of boolean algebras and a certain category of topological
spaces.

The Stone space is homeomorphic to the maximal ideal space of a ring when we
consider Boolean algebras as rings.

Fix variables x1, . . . , xn, fix T , a set of sentences of L, and apply the above
to the formulas of L with free variables among x1, . . . , xn. The corresponding
Lindenbaum algebra of T is the set of formulas ϕ(x1, . . . , xn) = ϕ(x̄) of L fac-
tored by ϕ ∼ ψ if T |= ∀x̄(ϕ(x̄) ↔ ψ(x̄)). This is a Boolean algebra with the
natural operations. For example, take an L′-structureM and a subset A ⊆M .
Let L = L′A and take TA = Th(M, A). The ultrafilters in the Lindenbaum
algebra of LA mod TA are the (complete) types (in x1, . . . , xn) of Th(M) over
A.
Given an L-structure M and A ⊆ M , each formula ϕ(x1, . . . , xn) ∈ LA (a for-
mula with parameters from A) defines a subset of Mn, ϕ(M) = {c̄ :M |= ϕ(c̄)},
a subset of Mn definable inM. Let n = 1. Then any type p defines a potential
element of M, but we could have p(M) =

⋂
ϕ∈p ϕ(M) = ∅. In which case the

type p is not realised in M (i.e. M omits p). For fixed n, the subsets of Mn

definable in M form a Boolean algebra and the types in n free variables corre-
spond to the ultrafilters in this boolean algebra.

Example

M = 〈R,+, ·, 0, 1,≤〉. Let χn(x) be the formula which says x is in (0, 1
n ).

These sets have the finite intersection property (and are definable) therefore
they generate a filter, which can be extended to an ultrafilter (i.e. a type). So
there is a type p (here A = ∅) containing all these (in fact, by quantifier elimina-
tion forM, there is a unique such p). This p is a description of an infinitesimal.
Note that there are no such elements in R, but if we enlarge R (i.e. take an
elementary extension) then we will get infinitesimals.
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3.1 Boolean Algebras and Stone Spaces

Let L be a language, T be a complete theory, M |= T and A ⊆ M . De-
note by STn (A) the set of all n-types in x1, . . . , xn (i.e. with free variables among
x1, . . . , xn) with parameters from A - the Stone space of the Lindenbaum algebra
of LA mod TA. Take the category of models of T with elementary embeddings.
Consider M↗, the subcategory with objects the elementary extensions of M.
Note that each formula ϕ(x1, . . . , xn) defines a functor onM↗, taking an ele-
mentary extension N ofM to ϕ(N ) ⊆ Nn. Also note that if N is an elementary
extension of M, and if A ⊆ M , B ⊆ N and A ⊆ B then we have a homomor-
phism of Lindenbaum algebras LA → LB , and the corresponding restriction
map STn (B)→ STn (A). This is the (Stone) dual map and it is continuous.

Definition 16. Let T be a topological space. A point p ∈ T is isolated if {p} is
open.

Let T ′ = T\{p : p is isolated} (T ′ is called the Cantor-Bendixson derivative of
T ). Note that T ′ is a closed subset of T as we have removed a union of open
sets. Now repeat this. Having defined T (α) where T (0) = T and T (1) = T ′, let
T (α+1) = T (α)\{p : p ∈ T (α) and p is isolated} for a sucessor ordinal α + 1.
If λ is a limit ordinal set T (λ) =

⋂
α<λ T

(α). This is an intersection of closed
sets, therefore each T (α) is closed. Let T (∞) =

⋂
α T

(α). If this process does
stabilize with T (∞) = ∅ (i.e. every type becomes isolated at some stage) then T
has Cantor-Bendixson rank. If T is compact then so is each T (γ), and then if
T (∞) = ∅ the least β such that T (β) = ∅ is not a limit ordinal, so β = α+ 1 for
some α. Then write CB(T ) = α - this is the Cantor-Bendixson rank of T . For
example every point in T is isolated if and only if CB(T ) = 0. For p ∈ T set
CB(p) = α such that p ∈ T (α) and p /∈ T (α+1), or CB(p) = ∞ if p ∈ T (∞). If
T (∞) 6= ∅ set CB(T ) =∞ (i.e. undefined).

If B is a Boolean algebra and if B is countable then either
1) CB(S(B)) <∞, in which case S(B) is countable, or
2) CB(S(B)) =∞, in which case |S(B)| = 2ℵ0 .
In case 1, where rank is defined, recall a basis of open sets Ob. Each point
p in T = S(B) is isolated in some T (α), so there is some open set such that
Ob ∩ T (α) = {p}. Each Ob is only used once to isolate a point. There are
countably many Ob, so there are only countably many p’s that can be isolated.
As the rank is defined each p gets isolated at some point.
In case 2, T (∞) 6= ∅ and T (∞) has no isolated points (but it is still Hausdorff).
Since there are no isolated points T (∞) must have more than one point. So
split the space into two closed non-empty subsets. Both of these are open and
have no isolated points. Repeat this. Take any decreasing sequence and it is,
by compactness of T , hence of T (∞), non-empty. There are 2ℵ0 of these se-
quences/nests of closed sets, all inhabited.
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For any space T if CB(T ) < ∞ (i.e. it is defined) then the set of isolated
points of T is dense in T (an open set which contains no isolated point remains
thus throughout the Cantor-Bendixson process).

If B is a Boolean algebra then CB(S(B)) <∞ if and only if B is superatomic.
Superatomic means that every quotient Boolean algebra of B is atomic (B is
atomic if every element of B, except the bottom element, is above an atom, that
is, for all b ∈ B, b > 0, there is a ∈ B such that b ≥ a > 0 with a an atom - i.e. a
minimal element, meaning that there does not exist z such that a > z > 0).
In contrast, we say that B is atomless if for all b > 0 there exists a such that
b > a > 0. For example, B = P(N)/ ∼ where x ∼ y (x, y ⊆ N) if x4y (their
symmetric difference) is finite, is atomless.
If B1 and B2 are countable atomless Boolean algebras then B1 ' B2. This is
proved by a back and forth argument.

Note that if p ∈ STn (A) then p is isolated if and only if there is a formula
ϕ(x̄) ∈ LA such that p = {ψ(x̄) ∈ LA : ϕ→ ψ} if and only if p as an ultrafilter
of A-definable sets is principal. Also note that such a p must be realised in
(every N �)M because M |= ∃x̄ϕ(x̄), say M |= ϕ(b̄). Since ϕ generates p it
must be that tpM(b/A) = {ψ(x̄) : ψ ∈ LA,M |= ψ(b̄)} = p (i.e. p is realised in
M).

3.2 The Omitting Types Theorem

Theorem 2 (Omitting Types Theorem). If L is a countable language, T is a
complete theory and if p ∈ STn (∅) is non-isolated then there is a modelM0 |= T
which omits p.
By the downward Löwenheim-Skolem theorem we can assume thatM0 is count-
able.

Proof. (Sketch) For convenience take n = 1. Let L1 be L with new constants
cn (n ∈ ω). Enumerate the sentences of L1 as σ0, σ1, . . . . Let T0 = T and
define Tm inductively as follows. At each stage we will have Tm \ T0 finite and
Tm consistent. At the mth stage, say Tm \ T0 = {τ1 ∧ · · · ∧ τk}. Denote by
τ∗ the conjunction of the τi. Choose n such that all cj appearing in τ∗ are
among c0, . . . , cn and replace each occurrence of ci in τ∗ by a new variable yi, to
get τ(x0, . . . , xn) ∈ L, such that τ∗ is τ(c0, . . . , cm). Then show that T proves
τ(x0, . . . , xn) 9 p(xm), say φ ∈ p is such that τ(x0, . . . , xn) 9 φ(xm). It follows
that T ′m = Tm ∪ {¬φ(cm)} is consistent. If σm is consistent with T ′m then add
it to T ′m to obtain T ′′m; otherwise set T ′′m = T ′m ∪ {¬σm}. If T ′′m = T ′m ∪ {σm}
and if σm has the form ∃xψ(x) where x is the (arbitrary but fixed) variable
designated to be the free variable for p then set Tm+1 = T ′′m ∪ {ψ(ck)} where ck
is the lowest-indexed ci not appearing in T ′′m, otherwise set Tm+1 = T ′′m. Finally
let Tω be the union of all these Tm: consistent and complete by construction.
Then show that a model of Tω yields a model of T omitting p.
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3.3 Large Structures

Let L be a language, T an L theory and M |= T .

Definition 17. We say that M is weakly saturated if it realises every type in⋃
n S

T
n (∅). If κ is an infinite cardinal then M is κ-saturated if it realises every

type in each STn (A) where A is any subset of M with |A| < κ.

For the latter, it is enough that every type in ST1 (A) for |A| < κ be realised
in M. To prove this we show by induction on n that every type in STn (A) is
realised. Given the result for n take p ∈ STn+1(A), p = p(x, y1, . . . , yn) = p(x, ȳ).
Let q(x) = ∃ȳp(x, ȳ) i.e. q(x) = {∃ȳϕ(x, ȳ) : ϕ(x, ȳ) ∈ p}. This is consistent.
For, take ϕ1, . . . , ϕt ∈ p, so

∧t
i=1 ϕi ∈ p, then, by the induction hypothesis,

M |= ∃x∃ȳ
∧t
i=1 ϕi(x, ȳ) ≡ ∃x

∧t
i=1 ∃ȳϕi(x, ȳ). This being consistent implies,

by the induction hypothesis, that p is realised, by c say inM. Consider p(c, ȳ) =
{ϕ(c, ȳ) : ϕ(x, ȳ) ∈ p}. This is consistent by a similar argument. So this
is realised, by b̄ say in M (by the inductive hypothesis) i.e. M |= p(c, b̄), as
required.

4 Wednesday 14th December 2005

4.1 Large Structures

Recall that M is λ-saturated if for all A ⊆ M , |A| < λ, for all p ∈ STn (A), p is
realised in M (and it is enough to take n = 1).

Definition 18. Call M ℵ0-homogeneous if for every finite tuple ā, b̄ from M,
if tp(ā) = tp(b̄) then for all a′ ∈ M then there is some b′ ∈ M such that
tp(āa′) = tp(b̄b′). More generally, M is κ-homogeneous if the same is true for
tuples ā, b̄ of cardinality less than κ. Say that M is strongly κ-homogeneous if
for all tuples ā, b̄ ∈ M of length less than κ if tp(ā) = tp(b̄) then there is an
automorphism f ∈ Aut(M) with f(ā) = b̄.

Clearly, strongly κ-homogeneous implies κ-homogeneous (as automorphisms
preserve types, take b′ = f(a′)). Also, if M is |M|-homogeneous then M is
strongly |M|-homogeneous. To see this take ā, b̄ of length less than κ with
tp(ā) = tp(b̄). We build an automorphism ofM which takes ā to b̄. Enumerate
M\ā as c0, . . . , cα, . . . for α < |M|. Then set the automorphism to take c0 to
d0 where d0 is such that tp(āc0) = tp(b̄d0). Such a d0 exists by the homogeneity
of M. Continue in this way to obtain a map from M to M which preserves
types. We realise that, in order to ensure that we have an automorphism, we
should interleave a ‘back’ argument with this ‘forth’ argument.

Definition 19. Define M to be κ-universal if for all N ≡ M, |N | < κ there
is an elementary embedding from N to M.

Theorem 3. IfM is κ-saturated thenM is κ-homogeneous and κ+-universal.
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Proof. For κ-homogeneous : Let ā, b̄ be from M of cardinality less than κ, let
a′ ∈ M and assume that tp(ā) = tp(b̄). Let p(ȳ, x) = tp(āa′) and consider
p(b̄, x) = {ϕ(b̄, x) : ϕ(ā, x) ∈ tp(āa′)} = {ϕ(b̄, x) :M |= ϕ(ā, a′)}. Then p(b̄, x)
is consistent. For, if ϕ1(b̄, x), . . . , ϕk(b̄, x) ∈ p(b̄, x) then by definition M |=∧k
i=1 ϕi(ā, a

′). So ∃x
∧k
i=1 ϕi(ȳ, x) ∈ tp(ā) = tp(b̄) i.e. M |= ∃x

∧k
i=1 ϕi(b̄, x).

So p(b̄, x) is consistent and hence is realised, by b′ say. Note that tp(b̄b′) =
tp(āa′) as required.
For κ+-universal : Let N ≡ M with |N | ≤ κ, say |N | = λ. Enumerate
N as b0, . . . , bα, . . . for α < λ. Consider b0 and tp(b0), which is realised by
some a0 in M (as it is a type over ∅). Inductively take b0 to a0, . . . , bα
to aα, . . . such that tp(b0 . . . bα) = tp(a0 . . . aα). Now consider bα+1 and let
tp(bα+1/b0 . . . bα) = p(x, b0, . . . , bα) which has less than κ parameters. Consider
p(x, a0, . . . , aα): it is consistent (as above) and so it is realised by aα+1 say in
M since |{a0, . . . , aα}| < κ. Then send bα+1 to aα+1. Continue in this way
(similarly at limit ordinals). In the end we define f : N →M by bi 7→ ai. Then
f is an elementary embedding because, by the inductive hypothesis tp(b0 . . . ) =
tp(a0 . . . ).

Theorem 4. a) If M ≡ N , both have cardinality κ and are κ-saturated then
M ' N (i.e. there is at most one κ-saturated model of each cardinality up to
isomorphism).
b) IfM≡ N both are of cardinality κ, are κ-homogeneous and realise the same
types over ∅ then M' N .

Proof. Each part is proved using a back and forth argument.

Theorem 5. Every M has a κ-saturated elementary extension.

Proof. Let A range over all subsets of M of cardinality less than κ, and for
each such A consider ST1 (A) where T = Th(M). Enumerate

⋃
A S

T
1 (A) as

p0, . . . , pα, . . . . By compactness we can realise a type in an elementary extension.
Realise p0 in say M0 � M, realise p1 in M1 � M0, . . . , realise pα in Mα+1.
Let Mλ, for λ a limit ordinal, be an elementary extension of

⋃
α<λMα which

realises pλ. By the elementary chain theorem M1 =
⋃
αMα �M1. Note that

M1 realises every 1-type over any subset A of M with |A| < κ. However,M1 is
not necessarily κ-saturated (there are lots of new subsets), so repeat this to get
M2 �M1. Repeat inductively over ordinals β for β < µ where µ is a cardinal
of cofinality κ. So we have a chain M ≺ M0 ≺ M1 ≺ · · · ≺ Mβ ≺ . . . . Let
M∗ =

⋃
βMβ : this is κ-saturated. For let A ⊆ M∗ with |A| < κ, then since

cf(µ) = κ there is β < µ such that |A| ⊆ Mβ and so, by construction, every
1-type over A is realised in Mβ+1, and hence in M∗.

4.2 κ-Saturated Ultraproducts

Definition 20. An ultrafilter, U on a set I is ω1-incomplete (or countably
incomplete) if there are Jn ⊆ I for n ∈ ω with Jn /∈ U for all n, but

⋃
n Jn ∈
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U . Equivalently, U is ω1-incomplete if there are sets J ′n ∈ U (n ∈ ω) (the
complements of the Jn) and with

⋂
n J

′
n /∈ U .

For example, every non principal ultrafilter on a countable set I is ω1-incomplete
since I =

⋃
i∈I{i} and, on any infinite set I, there is an ω1-incomplete ultrafilter.

For, let I =
⋃̇
nJn with Jn 6= ∅, then {I\Jn : n ∈ ω} has the finite intersection

property and so is contained in an ultrafilter U which must be ω1-incomplete.

Theorem 6. Assume that L is a countable language. Let U be an ω1-incomplete
ultrafilter on a set I. Let Mi be any L-structures (i ∈ I). Then we have that∏
i∈IMi/U =M∗ is ℵ0-saturated.

Proof. Let p ∈ ST1 (A) for some finite A ⊆M∗. Enumerate p as ϕ0, . . . , ϕn, . . . .
Suppose that I = J ′0 ⊇ J ′1 ⊇ . . . are such that J ′n ∈ U but

⋂
n J

′
n /∈ U .

Define Kn ⊆ I (n ∈ ω) by K0 = I and inductively define Kn = J ′n ∩ {i ∈ I :
Mi |= ∃x

∧n
j=0 ϕj(x)}. We know that {i ∈ I : Mi |= ∃x

∧n
j=o ϕj(x)} is in U ,

and therefore, note, this means Kn ∈ U . Also we see that
⋂
nKn /∈ U . For

i ∈ I\
⋂
nKn define n(i) to be the greatest n such that i ∈ Kn. Define ai ∈Mi

as follows. Fix i: if n(i) = 0 take any value for ai ∈Mi; if n(i) > 0 let ai ∈Mi

be such thatMi |=
∧n(i)
j=0 ϕj(ai) (such an ai exists since n(i) ≥ n); if n(i) is not

defined i.e. if i ∈
⋂
nKn then take any value for ai. We claim that a∗ = (ai)i/∼

realises p. For, given ϕn, we have for every i ∈ Kn that n(i) ≥ n (by definition).
So Mi |= ϕn(ai), but Kn ∈ U . So by  Los’ theorem M∗ |= ϕ(a∗) i.e. a∗ is a
realisation of p in M∗.

5 Wednesday 14th December 2005

5.1 κ-Saturated Ultraproducts

Theorem 7. Suppose |L| ≤ κ and take |I| = κ. Let U be a suitable ultrafilter
(ω1-incomplete, ‘κ-good’ - these exist). Then

∏
i∈IMi/U is κ-saturated.

See for example Chang and Keisler 6.1.8, alternatively Hodges, Marker, Bell
and Slomson.

Thus there is a functor (L-Struct) → (L-Struct), M 7→ MI/U , which takes
each L-structure to a κ-saturated elementary extension.

5.2 Monster Models

Let M be an infinite structure and let M∗ � M. A monster model is a large
very saturated elementary extension.

See for example Hodges Chapter 10, ‘λ-big’ extensions, for existence and prop-
erties/usefulness of these.
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5.3 Small Models

Definition 21. A structureM is atomic if every type realised inM is isolated.

Theorem 8. If M≡ N are atomic countable structures then M' N .

Proof. Use a back and forth argument

Theorem 9. Suppose that L is a countable language and T is a complete L-
theory. Then T has a (countable) atomic model if and only if for all n the
isolated points of STn (∅) are dense.

(This relates back to CB rank.)

Proof. See for example Marker 4.2.10

Theorem 10. Let M and N be L-structures. Then M ≡ N if and only if
there exists I and there is an ultrafilter U on I such that MI/U ' N I/U .

5.4 ℵ0-Categoricity

Definition 22. Let κ be an infinite cardinal. Then T is κ-categorical if there
is just one model of T of cardinality κ up to isomorphism.

Theorem 11 (Morley’s Theorem). If T is a countable theory and it is κ-
categorical for some uncountable κ then T is κ-categorical for every uncountable
κ.

There are no implications between ℵ0-categorical and ℵ1-categorical - all four
combinations of these properties and their negations may be illustrated by ex-
amples.

Theorem 12 ((Engeler) Ryll-Nardzewski (Svenonius) Theorem). If L is a
countable language and T is complete with no finite models then the following
are equivalent:

1. T is ℵ0-categorical,

2. for all n, STn (∅) is finite,

3. for all n, every p ∈ STn (∅) is isolated,

4. for all n, there are only finitely many formulas φ(x1, . . . , xn) up to equiv-
alence mod T , and

5. for all countable M |= T , Aut(M) has only finitely many orbits in its
diagonal action on Mn.
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Proof. 1⇒ 3 : By the Omitting Types Theorem and the downward Löwenheim
Skolem theorem.
3 ⇒ 2 : The Stone space STn (∅) is compact.
2 ⇒ 4 : Given ϕ(x1, . . . xn) let Oϕ = {p ∈ STn (∅) : ϕ ∈ p}. Check that ϕ ↔ ψ
mod T if and only if Oϕ = Oψ. There are finitely many possibilities for ϕ
because the Stone space is finite.
4 ⇒ 3 : Given p ∈ STn (∅) let ψp =

∧
{ψi : ψi ∈ p} where {ψ1, . . . , ψk} is a

representative set of formulas mod T . Then p↔ ψp.
3 ⇒ 1 : 3 implies that every model is atomic and countable and, with elemen-
tarily equivalent, this implies isomorphic.
5 ⇒ 2 : If there are infinitely many types choose countably many and realise
these in the countableM. Aut(M) cannot map n-tuples to tuples realizing dif-
ferent types, so Aut(M) has infinitely many orbits. Also we know that Aut(M)
preserves types.
2,3⇒ 5 : Build an isomorphism with a given base. There are only finitely many
types. If two n-tuples have the same type then build an automorphism between
them (as in the proof of 3 ⇒ 1), a back and forth argument.

5.5 Imaginaries

Suppose that M is an L-structure. We usually consider M2, . . . ,Mn, . . . i.e.
taking tuples from M.

Definition 23. A definable equivalence relation, E on Mn is an equivalence re-
lation which is defined by a formula, say ϕ(x̄, ȳ) (with 2n free variables) which is
such that ϕ(M) ⊆Mn+n is an equivalence relation on Mn i.e. M |= ∀x̄ϕ(x̄, x̄)
and it is symmetric and transitive.

We can incorporate M,M2, . . . ,Mn, . . . ,Mn/E (n and, given n, E varies)
etc. into a single many-sorted structure denoted Meq. The corresponding en-
riched language is denoted Leq. Assume that M was one-sorted. The sorts of
Leq are σ(n,E) (one sort for each n and each E). For each such there is a function
symbol: π(n,E) : σn → σn/E. If you like, a function symbol for each definable
function between sorts can be added. We have a category of sorts with definable
morphisms between them.
We have a functor Mod (T ) → Mod (T eq) which takes M 7→ Meq. For ex-
ample (σn/E)(M) = Mn/E. If T is complete then T eq is complete, where
T eq = ThLeq (Meq) with M any model of T .

If we repeat this i.e. we do L ; Leq ; (Leq)eq, we have added more sorts
to get the last of these, but every new sort is definably isomorphic to one in Leq.

Elimination of imaginaries : take a subset of Leq; we can ask whether we have
elimination of imaginaries to this collection of sort, i.e. whether every sort in
Leq is definably isomorphic to a definable subset of a finite product of these sorts.

In this above we can allow M itself to be a many-sorted structure. In which
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case we use arbitrary finite products of sorts of M in place of powers of the
home sort.
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