Intermediate Model Theory

(Notes by Josephine de la Rue and Marco Ferreira)
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1.1 Ultraproducts

Let L be a first order predicate language. Then M =< M,cM, fM, RM >,
an L-structure is a nonempty set M with interpretations for function, relation
and constant symbols. Here we use a one-sorted structure, but this could be
extended to a many-sorted structure.

Definition 1. Suppose we have a set M; (i € I) of L-structures, then the
product of these structures is M = [[, M;, which has the natural (pointwise)
L-structure, that is, ™M = (M), fM((al)i, -, (a);) = (fMi(al, -+ al));
and ((a})i,---,(a?);) € RM iff (a},--- ,al) € RM:i forallic I.

In general, a product has a different theory to that of the structures in the
set M;. For example a product of fields is just a ring. Note also that if ¢
is an atomic formula then [[, M; & o((a})i,---,(al);) iff {i € T : M; E
o(al,--+,a")} = I. In particular this shows that if J C I then the restiction
function (a;)ie; — (ai)ics is a surjective homomorphism from [[,.; M; to
[I;c; Mi. We will define next the notion of reduced product which generalizes
the notion of product in a sense that if ¢ is atomic then the reduced product
satisfies p((a});, -, (a?);) iff {i € I : M; = ¢(a}, -+ ,a?)} is “large” inside I.
Let us first define a notion of “large” inside I.

Definition 2. A filter on a set I is a subset F C P(I) such that I € F, 0 ¢ F,
ifJJKeFthenJNKeF andif JC K CI and J € F then K € F. So,
a filter is non-empty, does not contain the empty set, the intersection of two
elements in the filter is in the filter and anything above an element in the filter
18 in the filter.

We sometimes refer to the elements of a filter as “large” sets.

Definition 3. An ultrafilter, U is a maximal filter on I with respect to inclu-
sion. Equivalently, for every J C I either J € U or J¢ € U (where J¢ is the
complement of J), equivalently if JUK € U then J €U or K € U.



Every filter can be extended to an ultrafilter; but you should not expect to be
able to specify any non-principal ultrafilter completely since existence of such
is just a bit weaker than the Axiom of Choice/Zorn’s Lemma.

Definition 4. An ultrafilter is principal if it is of the form {J C I :ig € J} for
some ig € I.

Note that an ultrafilter is nonprincipal if and only if it contains the Fréchet filter
F={JC1I:TI\/J is finite}.

Define a relation ~ = ~x (for a given filter F) on [[, M; by (a;); ~ (b;);
if and only if {i € I : a; = b;} € F, where (a;);,(b;); € [[; Mi (ie. two
elements are equivalent if their coordinates are equal on a “large” set). Let
[I; M;/F be the quotient [[, M;/~. Note that ~ is indeed an equivalence rela-
tion. There is a natural induced structure on M* =[], M;/~, more precisely:
M= (M)~ M(ad)i) e (a)i) ~) = (P ad e al)i)
((a})i/ ~ -, (at);) ~) € RM iff {i € T : (a},---.,a}) € RM} € F.
Note that this is well defined. So we get a well defined L-structure on M* =
H’LMZ/ F.

Definition 5. The structure M* defined above is the reduced product of the M,
with respect to the filter F. If F is an ultrafilter then this M* is the ultraproduct
of the M;. If these M; are all the same structure M then this is called a reduced
power of M and if F is an ultrafilter then M™* is called an ultrapower of M.

Definition 6. Let the formula ¢ = @(x1,...,2,) of L be a formula with free
variables among x1,...,x, = T. It is said to be positive primitive (pp) if it has
the form 3y NI, 0:(Z,y) where each 8; is an atomic formula.

Theorem 1 (Los’ Theorem). Take structures M;(i € I) and a filter F on I.
Let M* =[], M;/F and take a positive primitive formula o(x1,...,xy,). Let
a',...,a" € M* (a7 = (a})i) ~).

i) M* | p(al,...,a") if and only if {i € I : M; = ¢(al,...,a)} € F. (Note
that this is not true with negations in ¢).

i1) if F is an ultrafilter then the first part is true for all formulas ¢

Proof. First check that it works for atomic formulas and then use induction on
the complexity of the formula ¢. For i) use the connective A and existential
quantifier 3 and the proof works using only the properties of filters. For ii) the
induction step also works for the conective — but it requires the fact that F is
an ultrafilter. O

If U is principal, say U = {J C I : ig € J}, then [[, M;/U ~ M;, so, even
though we usually forget to say so, the ultrafilters we use will be non principal.

Examples

1. Let Lg be the language containing only the equality relation. In this case
an Lg-structure is just a set. Let M, = {0,1,...,n—1} (n > 1). So



I =P (the set of positive integers). Take F to be the Fréchet filter (the
set of all cofinite sets of P). Form [] -, M, /F, a set of cardinality 2%°
(because all equivalence classes are countable). Clearly (an)n ~ (bn)n
if they agree on all but finitely many coordinates. Now extend F to an
ultrafilter U on P. The equivalence relation defined by U is coarser than the
one defined by F so there is a natural surjection [[, M, /F — [[ M, /U.
This map is a homomorphism. Note ¢/ must be non principal. Also note
that [[,, M, /U is infinite. To see this let o>, be the sentence (i.e. no
free variables) which says that there are at least n elements. We see that
{i : Mj = o>,} € F CU. So, by Los’ Theorem [[, M;/U = 0>,. This
is true for every n, so [, M;/U is infinite.

2. Let F* =], Fpn /U for some prime p, where Fpn is the finite field with p™
elements, and some ultrafilter & on P. Then F* is an infinite field of char-
acteristic p (as each Fy» has characteristic p) and F™* is not algebraically
closed. To see this let o be the sentence Jyo, y1—3x(2? + y12 + yo = 0).
Then Fp» = o for each Fyn (F,» has a proper quadratic extension), so
F* |= 0 and hence F"* is not algebraically closed.

3. Let F* = Hp F,/U where F), is the prime field of characteristic p. Then,
by Los’ Theorem, F* does not have characteristic p for any p, hence it has
characteristic 0.

Question - Does —1 have a square root in F*?

Answer - It depends on U (going from a filter to an ultrafilter uses the
axiom of choice, so we do not know exactly what is in the ultrafilter from
its construction).

4. Let F* =], pr/u (where IF,, is the algebraic closure of F),). Then F*
is an algebraically closed field of characteristic 0 (hence can be identified
with C since it has, in fact, cardinality 2%¢).

1.2 Functoriality

Consider (L-Struct) the category in which objects are L-structures and mor-
phisms are homomorphisms. Consider also the category (L-Struct)! in which
objects are I-indexed families of L-structures and morphisms are [-indexed
families of homomorphisms between the coordinates of the objects. The re-
duced power with respect to a given filter F on I induces a functor from
(L-Struct)! to (L-Struct). More precisely the functor assigns to each family
(M;); the reduced power [], M;/F and to each morphism (o : M; — N;); be-
tween the objects (M;); and (N;); is assigned the homomorphism [, a;/F
between [[, M;/F and [[, N;/F defined by (a;)i/ ~+— (i(a;))i/ ~. We
need to check that [], a;/F is in fact a homomorphism, but that is a con-
sequence of Los’ Theorem, in fact by Los’ Theorem if ¢ is an atomic for-
mula we have [[, M;/F E ¢((al)i/ ~,--,(al);/ ~)iff {i € T : N; E
olai, -~ ,af)} € F and [[Ni/F | ¢((ai(a7)i/ ~ - (ala}))i/ ~) iff
{iel:N;Epla(al), -+ ,a;(a?))} € F thus we get what we need because F



is closed under upwards inclusion. Note that the same argument also shows that
embeddings are sent to embeddings and if F is an ultrafilter then elementary
embeddings are also preserved. It is trivial to check that the functor preserves
composition of morphisms.

We can also trivially define a functor in the reverse direction by sending M to
(M); and (o : M — N) to (o : M — N); and composing these two functors
we get a functor from (L-Struct) to (L-Struct) that assigns to each L-structure
the corresponding reduced power with respect to F. Thus homomorphisms
and embeddings between L-structures induce homomorphisms and embeddings
between the corresponding reduced powers and the same for elementary embed-
dings in the case of ultrapowers.

1.3 Direct Limits

These are also referred to as directed colimits and are denoted h_rr)l

Definition 7. An upwards directed poset is a poset such that for any two ele-
ments, x,y in the poset there is another element, z in the poset greater than or
equal to both x and y.

Definition 8. Let P be a(n upwards directed) poset. P can be regarded as a
category, with objects the elements of P and a (single) arrow from x to y exactly
if v <y. A P-diagram in a category C is a functor P — C. The term is also
used to refer to the image of such a functor.

For example : C; — C, «+ C} is a directed diagram in a category, as is Cy —
Cy — ... (indexed by the natural numbers).

Definition 9. A cocone on such a diagram is an object C together with a

map C, — C for every Cy in the diagram, and such that all triangles in the

resulting diagram commute (see below). The directed colimit, if there is one, is

a universal cocone on the diagram and is denoted lim. _(C;). It is unique up
—ieP

to isomorphism.

The category of L-structures has direct limits. The reduced power [[, M;/F is
the direct limit of the diagram, indexed by F°P, which takes J € F to [[,., M;
and which takes the (opposite of the) inclusion J C J’ to the projection from
[I;c;s Mi to [[;c; M. This diagram is directed since F is closed under inter-
section: [[,c; Mi = [;cjnix Mi < [ ;e x Mi where both maps are projection
maps and J, K € F.
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2.1 Direct Limits

Definition 10. In a category C a directed diagram is a collection of objects

(Ch)i, indexed by a poset (I,<), and a collection of maps between them (C; Ja,



Cj)i<; such that for each pair i,j of elements of I there is k € I withi,j <k,
hence for every pair, C;, C;, of objects in the diagram there is an object Cy in
the diagram and there are the morphisms fi, and fijr. A cocone is given by an
object D and maps g; : C; — D such that g; = g;fi; whenever i < j. This
cocone is a direct limit if it has the property that for every cocone, given by data
D', (9})i, there is a unique map h : D — D’ such that hg; = g} for every i.

If C is the category of L-structures (or a suitable subcategory thereof), the di-
rect limit is, as a set, hi>n(Cl) = U;C;/ ~ where, if ¢ € C; and d € Cy, then ¢ ~ d
if these elements are identified in C; for some [ > i,k (i.e. if fijc = frd). The
L-structure is defined on this set in the obvious way: every element in the direct
limit is the image of an element in the diagram, indeed, any finitely many ele-
ments have, since the diagram is directed, pre-images in some C;. For example,
if C is the category of Z-modules, then, hi>n(Z X2, 73,747 . ) =Q.
The category of L-structures has direct limits, but the full subcategory of mod-
els of T, Mod(T), need not be closed under direct limits in the category of
L-structures. For example, Mod({3x,y(z # y)}) i.e. sets with at least two ele-
ments.
{0,1} — {0,1,2} — {0,1,2,3} — {0,1,2,3,4} —
0,1 1
0,1,2 2
0,1,2,3 +— 3 e
Then the direct limit is a one point set, which is outside the definable subcate-
gory. However, if T' is a set of formulas of the form V3 A 6; with the 6; atomic
then Mod(T) is closed under direct limits. For example consider the formula
VZ3y6, (Z,y) with 6; an atomic formula. Take a from lim C;. There will be a
preimage in the system, say a’ from C;. There will be V' in C; for some j > i
such that 61(a’,b) holds in C; so, since morphisms preserve atomic formulas,
61(a,Im(?)) holds in the direct limit, i.e. we have preservation under direct
limits.
Ultraproducts are direct limits of products. Take (M;);cr (L-structures) and
a filter F on I. Form the direct system of products over J € F°P, HieJMi’
where F°P is F directed by reverse inclusion. Then [, M; — [[x M; if K C J
gives a directed system and lim | ([[;c, Mi) = [I; Mi/F.
In the other direction we have the following proposition.

Definition 11. We say that an embedding f : M — N is pure if for ev-
ery pp-formula ¢ and a',--- ,a™ € M we have M = ¢(at,--- ,a") iff N |=
@(f(a1)7 e af(an))

Proposition 1. Let (M;);cr be a directed diagram of L-structures and let F be
a filter on I containing the Fréchet filter generated by {{j € I :j > i} :1 € I}.
(Note that this set has the finite intersection property, so extends to a filter).
Then there is a pure embedding from the direct limit of the diagram to the reduced
product with respect to F.

Proof. Let M! be the direct limit of the diagram and let M* = [], M;/F.
First we will show that M* is a cocone for the diagram. Let f;; denote the



homomorphism between M; and M, if i < j and let f; denote the limit homo-
morphism from M; to M!. Define g; : M; — M* by g;(a) = (fij(a));>i/ ~ (if
Jj < i define g;(a); arbitrarily, this will not change the equivalence class of the
image because {j € I : j > ¢} € F). To see that these form a cocone we need to
check that gr = g1 fi, in fact gi(fri(a)) = (fi;(fri(a))j=1/ ~= (frj(@))j=1/ ~=
(frj(a))j>r/ ~= gr(a). Thus by definition of direct limit there is a unique
homomorphism A : M! — M* such that the resulting system is comutative.
Therefore, if ¢ is a pp-formula then:

(*) M! = p(a) = M* |= p(h(a)) for every a € M.

But the reverse implication is also true, making h a pure embedding. To
see this, let @ be a tuple in M!, so there exist ¢ and a1, - ,a, € M; such
that @ = (fi(a1), -+, fi(an)). Recall that we have hf; = g; thus h(a) =
h(fi(a1), -+, filan)) = (gi(ar), -+, gi(an)) = ((fij(al))jzi/ Nyt »(fij(an))jzi/ ~
). Now if we assume the right side of (x), for j large enough we get M, =
@(fij(a1), -+, fij(an)) and applying the homomorphism f; we get

M! F=o(fifijlar), -, fifij(an)) & M! = o(filar), -, filan)) &

M= o(a). O

Note that in this proposition we can choose F to be an ultrafilter.

2.2 Boolean Algebras and Stone Spaces

Definition 12. A Boolean algebra, B is a lattice (with meet, A, and join, V.
operations) with 0,1 (a bottom and a top element) in which every element has
a complement and in which each of the lattice operations is distributive over the
other.

For example the power set, P(I), of a set I, with the usual union, intersection
and complementation and with top element I and bottom element ) is a Boolean
algebra.

Definition 13. A filter, F in a boolean algebra B is a subset of B such that if
a,b € F then a Nb € F (this corresponds to anb), ifa <b e B then b€ F and
also 1 € F and 0 ¢ F. (The ordering on a boolean algebra is defined by a <b
iff a Nb = a, equivalently if aVb="b.)

This definition generalises the previous definition of a filter.

Definition 14. An ultrafilter is a maximal filter. Equivalently, F is an ultra-
filter if and only if for all b € B either b € F or b¢ € F. Alternatively, for all
a,be Bifavbe F thena e F orbe F.

Definition 15. The Stone space of B, S(B) is a topological space with points
the ultrafilters, F, in B and a basis of open sets O, = {F : b € F} forb € B,
(alternatively, {F : b & F} is the same collection of sets).



Since S(B) = OpUOc, Oy is clopen and so S(B) is a totally disconnected space.
Clearly S(B) is Hausdorff (given two distinct filters we can find an element in
the one which is not in the other) and compact. For, if S(B) = |J; Op, (an
open cover with no finite subcover) consider the set of b$. This set has the finite
intersection property (i.e. non-zero meet) since b5 A --- A bS = 0 implies that
b1V---Vby, =1sothen S(B) = Op, U---UO,,, . Contradiction - this would then
be a finite subcover. So there is a filter and hence an ultrafilter, F, (by Zorn’s
Lemma) containing all the 0§, so F € S(B) \ J; Os,. Contradiction. Therefore
S(B) is compact.

We have therefore that the Stone space, S, is a compact Hausdorff space with
a basis of clopen sets.

Let B(S) be the Boolean algebra of compact open sets of S. Then B(S(B)) ~ B
and S(B(S)) ~ S. This is called Stone duality - it is a contravariant equivalence
between the category of boolean algebras and a certain category of topological
spaces.

The Stone space is homeomorphic to the maximal ideal space of a ring when we
consider Boolean algebras as rings.

Fix variables z1,...,x,, fix T, a set of sentences of L, and apply the above
to the formulas of L with free variables among x1,...,x,. The corresponding
Lindenbaum algebra of T is the set of formulas ¢(z1,...,2,) = ¢(Z) of L fac-

tored by ¢ ~ ¢ if T |= VZ(o(Z) < 9(Z)). This is a Boolean algebra with the
natural operations. For example, take an L’-structure M and a subset A C M.
Let L = Ly and take T4 = Th(M, A). The ultrafilters in the Lindenbaum
algebra of L4 mod T4 are the (complete) types (in z1,...,2,) of Th(M) over
A.

Given an L-structure M and A C M, each formula ¢(x1,...,2,) € L4 (a for-
mula with parameters from A) defines a subset of M™, (M) = {¢: M |= ¢(¢)},
a subset of M™ definable in M. Let n = 1. Then any type p defines a potential
element of M, but we could have p(M) =, ¢(M) = 0. In which case the
type p is not realised in M (i.e. M omits p). For fixed n, the subsets of M"
definable in M form a Boolean algebra and the types in n free variables corre-
spond to the ultrafilters in this boolean algebra.

Example

M = (R, +,-,0,1,<). Let xn(z) be the formula which says z is in (0, %)
These sets have the finite intersection property (and are definable) therefore
they generate a filter, which can be extended to an ultrafilter (i.e. a type). So
there is a type p (here A = ) containing all these (in fact, by quantifier elimina-
tion for M, there is a unique such p). This p is a description of an infinitesimal.

Note that there are no such elements in R, but if we enlarge R (i.e. take an
elementary extension) then we will get infinitesimals.
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3.1 Boolean Algebras and Stone Spaces

Let L be a language, T be a complete theory, M = T and A C M. De-
note by ST (A) the set of all n-types in x1, ..., x, (i.e. with free variables among
X1,...,%,) with parameters from A - the Stone space of the Lindenbaum algebra
of L, mod T4. Take the category of models of T" with elementary embeddings.
Consider M ", the subcategory with objects the elementary extensions of M.
Note that each formula (21, ...,z,) defines a functor on M 7, taking an ele-
mentary extension N of M to ¢(N) C N™. Also note that if A/ is an elementary
extension of M, and if A C M, B C N and A C B then we have a homomor-
phism of Lindenbaum algebras L4 — Lp, and the corresponding restriction
map ST (B) — ST(A). This is the (Stone) dual map and it is continuous.

Definition 16. Let T be a topological space. A point p € T is isolated if {p} is
open.

Let T/ = T\{p : p is isolated} (T is called the Cantor-Bendixson derivative of
T). Note that T" is a closed subset of T as we have removed a union of open
sets. Now repeat this. Having defined 7(® where T(©) = T and T = T7, let
Tt = T@\{p : p € T and p is isolated} for a sucessor ordinal o + 1.
If \ is a limit ordinal set TN = MNa<x T(®). This is an intersection of closed
sets, therefore each T(®) is closed. Let T(®) = Na T(®). If this process does
stabilize with T(>) = () (i.e. every type becomes isolated at some stage) then T
has Cantor-Bendizson rank. If T is compact then so is each T, and then if
T(°) = () the least 8 such that 7® = ) is not a limit ordinal, so 8 = a + 1 for
some «. Then write CB(T') = « - this is the Cantor-Bendizson rank of T. For
example every point in T is isolated if and only if CB(T) = 0. For p € T set
CB(p) = a such that p € T(® and p ¢ TV or CB(p) = cc if p € T(>). If
T() £ () set CB(T) = oo (i.e. undefined).

If B is a Boolean algebra and if B is countable then either

1) CB(S(B)) < oo, in which case S(B) is countable, or

2) CB(S(B)) = oo, in which case |S(B)| = 2%o.

In case 1, where rank is defined, recall a basis of open sets O,. Each point
pin T = S(B) is isolated in some T®)| so there is some open set such that
O, NT® = {p}. Each Oy is only used once to isolate a point. There are
countably many Oy, so there are only countably many p’s that can be isolated.
As the rank is defined each p gets isolated at some point.

In case 2, T(°) # () and T(>) has no isolated points (but it is still Hausdorff).
Since there are no isolated points 7(°°) must have more than one point. So
split the space into two closed non-empty subsets. Both of these are open and
have no isolated points. Repeat this. Take any decreasing sequence and it is,
by compactness of T, hence of T(°), non-empty. There are 280 of these se-
quences/nests of closed sets, all inhabited.



For any space T if CB(T) < oo (i.e. it is defined) then the set of isolated
points of T is dense in T' (an open set which contains no isolated point remains
thus throughout the Cantor-Bendixson process).

If B is a Boolean algebra then CB(S(B)) < oo if and only if B is superatomic.
Superatomic means that every quotient Boolean algebra of B is atomic (B is
atomic if every element of B, except the bottom element, is above an atom, that
is, for all b € B, b > 0, there is a € B such that b > a > 0 with a an atom - i.e. a
minimal element, meaning that there does not exist z such that a > z > 0).
In contrast, we say that B is atomless if for all b > 0 there exists a such that
b > a > 0. For example, B = P(N)/ ~ where  ~ y (z,y C N) if zAy (their
symmetric difference) is finite, is atomless.

If By and By are countable atomless Boolean algebras then By ~ Bs. This is
proved by a back and forth argument.

Note that if p € SL(A) then p is isolated if and only if there is a formula
©(Z) € L4 such that p = {¢(Z) € La : ¢ — ¢} if and only if p as an ultrafilter
of A-definable sets is principal. Also note that such a p must be realised in
(every N =)M because M = ITp(Z), say M = o(b). Since ¢ generates p it
must be that tpM(b/A) = {4(z) : ¢ € La, M = 9(b)} = p (i.e. p is realised in

3.2 The Omitting Types Theorem

Theorem 2 (Omitting Types Theorem). If L is a countable language, T is a
complete theory and if p € ST (D) is non-isolated then there is a model Mo =T
which omits p.

By the downward Lowenheim-Skolem theorem we can assume that Mg is count-
able.

Proof. (Sketch) For convenience take n = 1. Let L; be L with new constants
¢n (n € w). Enumerate the sentences of L; as 0g,01,.... Let Typ = T and
define T},, inductively as follows. At each stage we will have T, \ Tp finite and
T, consistent. At the m!" stage, say Ty, \ To = {71 A --- A 7;,}. Denote by
7* the conjunction of the ;. Choose n such that all ¢; appearing in 7 are
among co, . . . , ¢, and replace each occurrence of ¢; in 7% by a new variable y;, to
get 7(xo,...,x,) € L, such that 7* is 7(co, ..., ¢ ). Then show that T proves
(o, ..., Tn) » P(Tm), say ¢ € pis such that 7(zo, ..., zn) » ¢(2m). It follows
that T}, = T,, U {=¢(c;)} is consistent. If oy, is consistent with T, then add
it to T, to obtain T); otherwise set T, = T/, U{-o,}. U T) =T U{on}
and if oy, has the form Jxi(r) where x is the (arbitrary but fixed) variable
designated to be the free variable for p then set Ty,4+1 = T, U {¢)(cx)} where ¢,
is the lowest-indexed ¢; not appearing in T/ | otherwise set T, 11 = 7). Finally
let T,, be the union of all these T,: consistent and complete by construction.
Then show that a model of T, yields a model of T" omitting p. O



3.3 Large Structures
Let L be a language, T an L theory and M = T.

Definition 17. We say that M is weakly saturated if it realises every type in
U,, ST(0). If r is an infinite cardinal then M is k-saturated if it realises every
type in each SL(A) where A is any subset of M with |A| < k.

For the latter, it is enough that every type in ST (A) for |A| < k be realised
in M. To prove this we show by induction on n that every type in S (A) is
realised. Given the result for n take p € S1_{(A), p =p(z,y1,...,Yn) = p(x, ).
Let q(x) = Jgp(z,7) ie. q(x) = {Fgp(x,y) : ¢(x,y) € p}. This is consistent.
For, take ¢1,...,¢: € p, so /\f:1 @; € p, then, by the induction hypothesis,
M E Ty /\f:1 vi(z,y) = Jx /\f:1 Igi(x, 7). This being consistent implies,
by the induction hypothesis, that p is realised, by ¢ say in M. Consider p(c, §) =
{o(c,y) : p(x,gy) € p}. This is consistent by a similar argument. So this
is realised, by b say in M (by the inductive hypothesis) i.e. M = p(c,b), as
required.

4 Wednesday 14th December 2005

4.1 Large Structures

Recall that M is A-saturated if for all A C M, |A| < A, for all p € ST(A), pis
realised in M (and it is enough to take n = 1).

Definition 18. Call M Yg-homogeneous if for every finite tuple a,b from M,
if tp(@) = tp(b) then for all a' € M then there is some ' € M such that
tp(aa’) = tp(bb'). More generally, M is k-homogeneous if the same is true for
tuples a,b of cardinality less than k. Say that M is strongly k-homogeneous if
for all tuples a,b € M of length less than k if tp(a) = tp(b) then there is an

automorphism f € Aut(M) with f(a) =b.

Clearly, strongly s-homogeneous implies k-homogeneous (as automorphisms
preserve types, take b’ = f(a')). Also, if M is |M]-homogeneous then M is
strongly |M|-homogeneous. To see this take @,b of length less than x with
tp(a) = tp(b). We build an automorphism of M which takes @ to b. Enumerate
M\a as co,...,Cq,-.. for @ < |M]. Then set the automorphism to take ¢y to
do where dy is such that tp(acy) = tp(bdy). Such a dy exists by the homogeneity
of M. Continue in this way to obtain a map from M to M which preserves
types. We realise that, in order to ensure that we have an automorphism, we
should interleave a ‘back’ argument with this ‘forth’ argument.

Definition 19. Define M to be k-universal if for all N = M, |N| < k there
is an elementary embedding from N to M.

Theorem 3. If M is r-saturated then M is k-homogeneous and k™ -universal.

10



Proof. For k-homogeneous : Let @,b be from M of cardinality less than &, let
a’ € M and assume that tp(a) = tp(b). Let p(y,r) = tp(aa’) and consider
p(b,2) = {¢(b,2) : (@, 2) € tp(aa')} = {p(b,x) : M = (@, )} Then p(b,z)
is consistent. For, if ¢1(b,z),...,0r(b,x) € p(b,x) then by definition M =
Aizi 9i(@, ). So 3z Ny i(@, ) € tp(a) = tp(b) ie. M |= 3z AL, 0:(b, 7).
So p(b,x) is consistent and hence is realised, by b say. Note that tp(bb’) =
tp(aa’) as required.

For kT-universal : Let NN = M with [N| < &, say [N| = A\. Enumerate
N as bg,...,by,... for @ < A. Consider by and tp(by), which is realised by
some ag in M (as it is a type over ). Inductively take by to ag, ..., ba
t0 agq, ... such that tp(by...bs) = tp(ag...as). Now consider byy; and let
tp(ba+1/bo - --ba) = p(x,bo,...,bs) which has less than x parameters. Consider
p(x,ag,...,a,): it is consistent (as above) and so it is realised by an41 say in
M since |{ag,...,aq}| < K. Then send by41 to an+1. Continue in this way
(similarly at limit ordinals). In the end we define f : N — M by b; — a;. Then
f is an elementary embedding because, by the inductive hypothesis tp(bg ... ) =

tp(ao ... ). O

Theorem 4. a) If M = N, both have cardinality s and are r-saturated then
M ~ N (i.e. there is at most one r-saturated model of each cardinality up to
isomorphism,).

b) If M = N both are of cardinality k, are k-homogeneous and realise the same
types over O then M ~ N.

Proof. Each part is proved using a back and forth argument. O
Theorem 5. FEvery M has a k-saturated elementary extension.

Proof. Let A range over all subsets of M of cardinality less than x, and for
each such A consider S{ (A) where T = Th(M). Enumerate |J, ST (A) as
P05 - - - s Pa, - - - - By compactness we can realise a type in an elementary extension.
Realise pg in say Mg = M, realise p; in My = My,..., realise p, in My41.
Let My, for A a limit ordinal, be an elementary extension of |J,_, M, which
realises px. By the elementary chain theorem M' = U, Ma > M. Note that
M! realises every 1-type over any subset A of M with |A| < k. However, M1 is
not necessarily k-saturated (there are lots of new subsets), so repeat this to get
M? = M. Repeat inductively over ordinals 3 for 3 < u where yu is a cardinal
of cofinality x. So we have a chain M < M? < M! < ... < MP < ... Let
M* =g MP: this is k-saturated. For let A C M* with |A| < x, then since
cf(p) = k there is 3 < u such that |A] € M” and so, by construction, every
1-type over A is realised in M”*1, and hence in M*. O

4.2 k-Saturated Ultraproducts

Definition 20. An wultrafilter, U on a set I is wy-incomplete (or countably
incomplete) if there are J, C I for n € w with J, ¢ U for all n, but |J,, Jn €
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U. Equivalently, U is wy-incomplete if there are sets J, € U (n € w) (the
complements of the Jp,) and with (), J), ¢ U.

For example, every non principal ultrafilter on a countable set I is wy-incomplete
since I = |J;c,{i} and, on any infinite set I, there is an w;-incomplete ultrafilter.
For, let I = Uan with J,, # 0, then {I\J, : n € w} has the finite intersection
property and so is contained in an ultrafilter &/ which must be w;-incomplete.

Theorem 6. Assume that L is a countable language. LetU be an wy-incomplete
ultrafilter on a set I. Let M; be any L-structures (i € I). Then we have that
[I,cr Mi/U = M* is Ng-saturated.

Proof. Let p € S{ (A) for some finite A C M*. Enumerate p as g, ..., @n, - - - -
Suppose that I = Jy D J; 2 ... are such that J,, € U but (,J, ¢ U.
Define K,, C I (n € w) by Ky = I and inductively define K,, = J, N{i € I :
M; | 3z Nj_gpj(x)}. We know that {i € T: M; = 3z \J_, p;(2)} is in U,
and therefore, note, this means K, € U. Also we see that [, K, ¢ U. For
i € I\(,, K, define n(i) to be the greatest n such that ¢ € K,,. Define a; € M,
as follows. Fix i: if n(i) = 0 take any value for a; € M;; if n(i) > 0 let a; € M;
be such that M; = /\;Li% @;(a;) (such an a; exists since n(i) > n); if n(7) is not
defined i.e. if i € ),, K, then take any value for a;. We claim that a* = (a;);/~
realises p. For, given ¢,,, we have for every i € K, that n(i) > n (by definition).
So M; = pn(a;), but K,, € U. So by Los’ theorem M* |= p(a*) i.e. a* is a
realisation of p in M*. O

5 Wednesday 14th December 2005

5.1 k-Saturated Ultraproducts

Theorem 7. Suppose |L| < k and take |I| = . Let U be a suitable ultrafilter
(w1-incomplete, ‘k-good’ - these exist). Then [];c; Mi/U is k-saturated.

See for example Chang and Keisler 6.1.8, alternatively Hodges, Marker, Bell
and Slomson.

Thus there is a functor (L-Struct) — (L-Struct), M — M /U, which takes
each L-structure to a k-saturated elementary extension.

5.2 Monster Models

Let M be an infinite structure and let M* >~ M. A monster model is a large
very saturated elementary extension.

See for example Hodges Chapter 10, ‘A-big’ extensions, for existence and prop-
erties/usefulness of these.
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5.3 Small Models

Definition 21. A structure M is atomic if every type realised in M is isolated.
Theorem 8. If M =N are atomic countable structures then M ~ N .

Proof. Use a back and forth argument O

Theorem 9. Suppose that L is a countable language and T is a complete L-
theory. Then T has a (countable) atomic model if and only if for all n the
isolated points of ST (()) are dense.

(This relates back to CB rank.)
Proof. See for example Marker 4.2.10 O

Theorem 10. Let M and N be L-structures. Then M = N if and only if
there exists I and there is an ultrafilter U on I such that M /U ~ N1 /u.

5.4 Ny-Categoricity

Definition 22. Let x be an infinite cardinal. Then T is k-categorical if there
1s just one model of T of cardinality k up to isomorphism.

Theorem 11 (Morley’s Theorem). If T is a countable theory and it is k-
categorical for some uncountable k then T is k-categorical for every uncountable
K.

There are no implications between Ny-categorical and Np-categorical - all four
combinations of these properties and their negations may be illustrated by ex-
amples.

Theorem 12 ((Engeler) Ryll-Nardzewski (Svenonius) Theorem). If L is a
countable language and T is complete with no finite models then the following
are equivalent:

1. T is Ny-categorical,
2. for all n, ST(0) is finite,
3. for alln, every p € SI(() is isolated,

4. for all n, there are only finitely many formulas ¢(x1,...,z,) up to equiv-
alence mod T, and

5. for all countable M = T, Aut(M) has only finitely many orbits in its
diagonal action on M™.
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Proof. 1 = 3 : By the Omitting Types Theorem and the downward Lowenheim
Skolem theorem.

3 = 2 : The Stone space SI () is compact.

2 = 4 : Given p(z1,...7,) let O, = {p € ST(D) : ¢ € p}. Check that ¢ < ¥
mod 7' if and only if O, = Oy. There are finitely many possibilities for ¢
because the Stone space is finite.

4 = 3: Given p € SI(0) let v, = A{ti : ¥; € p} where {¢1,...,¢x} is a
representative set of formulas mod 7. Then p < 1.

3 = 1 : 3 implies that every model is atomic and countable and, with elemen-
tarily equivalent, this implies isomorphic.

5 = 2 : If there are infinitely many types choose countably many and realise
these in the countable M. Aut(M) cannot map n-tuples to tuples realizing dif-
ferent types, so Aut(M) has infinitely many orbits. Also we know that Aut(M)
preserves types.

2,3 = 5 : Build an isomorphism with a given base. There are only finitely many
types. If two n-tuples have the same type then build an automorphism between
them (as in the proof of 3 = 1), a back and forth argument. O

5.5 Imaginaries

n

Suppose that M is an L-structure. We usually consider M?2,..., M", ... ie.
taking tuples from M.

Definition 23. A definable equivalence relation, E on M™ is an equivalence re-
lation which is defined by a formula, say (T,7) (with 2n free variables) which is
such that o(M) C M™ ™ is an equivalence relation on M"™ i.e. M = Vzp(T, )
and it is symmetric and transitive.

We can incorporate M, M2, ... . M" ..., M"/E (n and, given n, E varies)
etc. into a single many-sorted structure denoted M¢®?. The corresponding en-
riched language is denoted L¢?. Assume that M was one-sorted. The sorts of
L¢% are o(,, gy (one sort for each n and each E). For each such there is a function
symbol: 7, gy : 0" — o™ /E. If you like, a function symbol for each definable
function between sorts can be added. We have a category of sorts with definable
morphisms between them.

We have a functor Mod (T') — Mod (7°?) which takes M +— M. For ex-
ample (¢"/E)(M) = M"/E. If T is complete then T¢? is complete, where
T = Thpes(M®?) with M any model of T.

If we repeat this i.e. we do L ~ L° ~» (L°?)°?, we have added more sorts
to get the last of these, but every new sort is definably isomorphic to one in L¢9.

Elimination of imaginaries : take a subset of L°?; we can ask whether we have
elimination of imaginaries to this collection of sort, i.e. whether every sort in

L*1 is definably isomorphic to a definable subset of a finite product of these sorts.

In this above we can allow M itself to be a many-sorted structure. In which
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case we use arbitrary finite products of sorts of M in place of powers of the
home sort.
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