MODNET
Research Training Network in Model Theory
Publications > Preprint server > Preprint Number 1029

Preprint Number 1029

Previous Next Preprint server


1029. Luck Darnière
Polytopes and simplexes in p-adic fields
E-mail:

Submission date: 23 February 2016

Abstract:

We introduce topological notions of polytopes and simplexes, the latter being expected to play in p-adically closed fields the role played by real simplexes in the classical results of triangulation of semi-algebraic sets over real closed fields. We prove that the faces of every p-adic polytope are polytopes and that they form a rooted tree with respect to specialisation. Simplexes are then defined as polytopes whose faces tree is a chain. Our main result is a construction allowing to divide every p-adic polytope in a complex of p-adic simplexes with prescribed faces and shapes.

Mathematics Subject Classification:

Keywords and phrases:

Full text arXiv 1602.07209: pdf, ps.


Last updated: April 28 2016 13:36 Please send your corrections to: