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QUASI-ORDERED RINGS

SIMON MÜLLER

Abstract. A quasi-order is a binary, reflexive and transitive relation. In the

Journal of Pure and Applied Algebra 45 (1987), S.M. Fakhruddin introduced
the notion of (totally) quasi-ordered fields and showed that each such field is

either an ordered field or else a valued field. Hence, quasi-ordered fields are

very well suited to treat ordered and valued fields simultaneously.
In this note, we will prove that the same dichotomy holds for commutative

rings with 1 as well. For that purpose we first develop an appropriate notion

of (totally) quasi-ordered rings. Our proof of the dichotomy then exploits
Fakhruddin’s result that was mentioned above.

Quasi-ordered Rings are a very interesting class on its own. Their investigation

is continued in [4], where Salma Kuhlmann and the author of this note develop
a notion of compatibility between quasi-orders and valuations, and establish a

Baer-Krull Theorem.

1. Introduction

Let S be a set and � a binary, reflexive, and transitive relation on S. Then � defines
an equivalence relation ∼ :=∼� on S by declaring a ∼ b :⇔ a � b and b � a. Here
∼ always denotes this equivalence relation and we write a ≺ b for a � b and b � a.
In his note [3], Fakhruddin gave the following definition of quasi-ordered fields:

Definition 1.1. Let K be a field and � a binary, reflexive, transitive and total
relation on K. Then (K,�) is called a quasi-ordered field if ∀x, y, z ∈ K :

(Q1) x ∼ 0⇒ x = 0,
(Q2) x � y, 0 � z ⇒ xz � yz,
(Q3) x � y, z � y ⇒ x+ z � y + z.

Quasi-ordered fields unify the classes of ordered and valued fields, as Fakhruddin’s
main theorem states (see [3, Theorem 2.1]):

Theorem 1.2. A quasi-ordered field (K,�) is either an ordered field or else a
valued field (K, v) such that x � y if and only if v(y) ≤ v(x) for all x, y ∈ K.
The aim of this note is to establish the same result for quasi-ordered rings, see
Theorem 4.6, respectively Theorem 4.7. In section two we briefly recall valued and
ordered rings. The object of the third section is to introduce ournotion of quasi-
ordered rings, and to show that for such rings the equivalence class of 0 with respect
to ∼, denoted by E0, is a prime ideal. In the fourth and final section, we prove
the dichotomy in two steps. At first we show that the quasi-order on R can be
extended to a quasi-order on the quotient field Quot(R/E0), see Proposition 4.3,
and apply Theorem 1.2. Afterwards we carry out how this gives rise to a suitable
order, respectively a suitable valuation, on R.

2. Ordered and valued rings

For the rest of this section, let R always denote a commutative ring with 1.

In real algebra it is common to regard order relations as unary relations, i.e. as
subsets of the algebraic structure under consideration, and to declare precisely the
elements of this subset as the non-negative elements. In this sense, orders on rings
are identified with positive cones (see for instance [5, p. 29]):
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Definition 2.1. A positive cone of R is a subset P ⊂ R such that the following
conditions are satisfied:

(P0) P ∪ −P = R (totality),
(P1) p := P ∩ −P is a prime ideal of R, called the support of R,
(P2) P · P ⊆ P,
(P3) P + P ⊆ P.

The correspondence between positive cones P ⊂ R and orders ≤⊂ R2 is then given
by x ≤ y ⇔ y−x ∈ P. However, as the next lemma shows, such unary descriptions
of order relations can only work if the compatibility of the order with addition is
not restricted.

Lemma 2.2. Let T be a subset of R. For x, y ∈ R define x ≤ y :⇔ y − x ∈ T.
Then ≤ already satisfies ∀x, y, z ∈ R : x ≤ y ⇒ x+ z ≤ y + z.

Proof. Suppose x ≤ y, so y− x ∈ T. Then also (y+ z)− (x+ z) ∈ T for any z ∈ R.
Consequently x+ z ≤ y + z. �

Thus, in order to deal with axioms like (Q3), it is necessary to work with orders
(binary) instead of positive cones (unary). This motivates:

Definition 2.3. Let ≤ be a binary, reflexive, transitive and total relation on R.
Then (R,≤) is called an ordered ring if ∀x, y, z ∈ R :

(O1) 0 < 1,
(O2) xy ≤ 0⇒ x ≤ 0 ∨ y ≤ 0,
(O3) x ≤ y, 0 ≤ z ⇒ xz ≤ yz,
(O4) x ≤ y ⇒ x+ z ≤ y + z.

We claim that the Definitions 2.1 and 2.3 are equivalent. In Lemma 2.4 and Corol-
lary 2.5 below, we only prove that the axioms (O1) and (O2) correspond to (P1),
hereby pretending that the rest of the proof, which is straightforward, was already
carried out. As mentioned in the introduction, let ∼ := ∼≤ be the equivalence
relation given by x ∼ y ⇔ x ≤ y and y ≤ x, and let E0 be the equivalence class of
0. Note that for ordered rings the sets E0 and p = P ∩ −P coincide.

Lemma 2.4. Let (R,≤) be an ordered ring, except that axiom (O2) is omitted.
Then (O2) holds if and only if (O2′) xy ∼ 0⇒ x ∼ 0 ∨ y ∼ 0 holds.

Proof. We first prove the only if part. Let xy ≤ 0. Assume that 0 < x and 0 < y.
Then (O3) yields 0 ≤ xy and therewith xy ∼ 0. From the assumption (O2’) follows
x ∼ 0 or y ∼ 0, a contradiction. Hence x ≤ 0 or y ≤ 0. Now suppose that (O2)
holds. Show that x � 0 and y � 0 implies xy � 0. Assume without loss of generality
that 0 < x and 0 < y (if for instance x < 0, then 0 < −x and we continue with −x
instead of x). Then (O2) yields 0 < xy. Therefore xy � 0. �

Obviously axiom (P1) implies both (O1) and (O2’), and so by Lemma 2.4 it also
implies (O2). The following corollary states that the converse is also true, i.e. from
the axioms of an ordered ring follows that p is a prime ideal.

Corollary 2.5. If (R,≤) is an ordered ring, then E0 = {x ∈ R : x ∼ 0}, which is
equal to p, is a prime ideal of R.

Proof. Evidently 0 ∈ E0 by reflexivity. Now let x, y ∈ E0. From 0 ≤ x and 0 ≤ y
follows 0 ≤ y ≤ x+y. Transitivity yields 0 ≤ x+y. Analogously we obtain x+y ≤ 0
and hence x+y ∈ E0. Next, let x ∈ E0 and y ∈ R. The case 0 ≤ y is clear. If y ≤ 0,
then 0 ≤ −y. Therefore 0 ≤ −xy and −xy ≤ 0. By (O4) we obtain that xy ∈ E0.
Thus, E0 is an ideal. By Lemma 2.4 and axiom (O1), E0 is a prime ideal of R. �
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We conclude this section by recalling ring valuations.

Definition 2.6. (see [1, VI. 3.1]) Let (Γ,+,≤) be an ordered abelian group and
∞ a symbol such that γ <∞ and ∞ =∞+∞ = γ +∞ =∞+ γ for all γ ∈ Γ.
A map v : R→ Γ ∪ {∞} is called a valuation on R if ∀x, y ∈ R :

(V1) v(0) =∞,
(V2) v(1) = 0,
(V3) v(xy) = v(x) + v(y),
(V4) v(x+ y) ≥ min{v(x), v(y)}.

We always assume that Γ is the group generated by {v(x) : x /∈ v−1(∞)} and call
it the value group of R. The set q := supp(v) := v−1(∞) is called the support
of v.

Note that ring valuations are in general not surjective. This is because v(R− q) is
not necessarily closed under additive inverses. However, if R is a field and x ∈ R
with v(x) = γ ∈ Γ, then it is easy to see that v(x−1) = −γ.

Lemma 2.7. If v is a valuation on R, then its support q is a prime ideal of R.

Proof. 0 ∈ q and 1 /∈ q by the axioms (V1) and (V2), respectively. Now let x, y ∈ q.
Via (V4) we obtain v(x+ y) ≥ min{v(x), v(y)} =∞, so x+ y ∈ q. Next, let x ∈ q
and r ∈ R. (V3) implies v(rx) = v(r) + v(x) = ∞, whereby xr ∈ q. Finally, if
xy ∈ q, again by (V3) it holds ∞ = v(xy) = v(x) + v(y), thus x ∈ q or y ∈ q. �

Any valuation v on R defines a quasi-order � on the set R by declaring x � y if
and only if v(y) ≤ v(x) for x, y ∈ R. In analogy to the ordered case, the equivalence
class E0 of 0, with respect to ∼ :=∼�, coincides with the support q.

An immediate but important consequence of the axioms of a valuation above is
the next result, which we will later use to get that any valued ring (R, v) is a
quasi-ordered ring.

Lemma 2.8. Let v : R → Γ ∪ {∞} be a valuation and x, y ∈ R with v(x) 6= v(y).
Then v(x+ y) = min{v(x), v(y)}.

Proof. As in the field case, see for instance [2, p.20, (1.3.4)]. �

3. Quasi-ordered rings

Let R denote a commutative ring with 1.

The notions of quasi-ordered fields and ordered rings (see the Definitions 1.1 and
2.3) suggest to call (R,�) a quasi-ordered ring, if � is a binary, reflexive, total and
transitive relation on R, such that the axioms (O1) – (O3) and (Q3) are satisfied.
However, as the following counterexample shows, this is not quite good enough to
obtain the desired dichotomy.

Consider R = R[X,Y ]. We define a relation �′ on the monomials in R as follows:
first declare 0 ≺′ r for all r ∈ R\{0}. For f = rXiY j and g = sXmY n ∈ R\{0} set

f �′ g :⇔

{
either 0 < n

or j = n = 0 and i ≤ m
So the relation �′ can be described by the chain

0 ≺′ 1 ≺′ X ≺′ X2 ≺′ X3 ≺′ . . . ≺′ Y ∼ XY ∼ X2Y ∼ . . . ∼ Y 2 . . .

and the rule rf ∼ f for all monomials f and all r ∈ R\{0}. Extend �′ to the whole
of R by declaring for 0 6= f, g ∈ R :

f � g :⇔ the �′ -largest monomial of f is smaller or equivalent than the one of g.
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Proposition 3.1.

(1) � is a reflexive, transitive and total relation on R such that (R,�) satisfies
the axioms (O1)− (O3) and (Q3).

(2) � is neither an order on R, nor given by f � g ⇔ v(g) ≤ v(f) for some
valuation v on R.

Proof. (1) Clearly � is reflexive, transitive, total and satisfies (O1). To prove (O2),
note that R is integer and that there are no �-negative elements, so fg � 0 yields
f = 0 or g = 0. Hence, f � 0 or g � 0. For (O3), simply observe that if m is a
�′-larger monomial than n, then am is a �′-larger monomial than an for all a ∈ R.
It remains to verify axiom (QR3). So assume that f � g and h � g. The condition
h � g particularly ensures, that the largest �′-monomial of g is not the additive
inverse of the largest �′-monomial of h. Either the largest �′-monomial of h is
strictly smaller than the one of g and then f + h � g + h, or it is strictly greater
and then f + h ∼ g + h.

(2) � is certainly not an order since 0 ≺ −1. It is also not induced by some valuation
on R since X ≺ X2 and 0 ≺ Y, but XY ∼ X2Y. So if � would come from some
valuation v, then 2v(X) < v(X) and v(Y ) <∞, but 2v(X) + v(Y ) = v(X) + v(Y ),
a contradiction. �

Thus, an additional axiom is required that rules this kind of counterexample out.

Definition 3.2. Let R be a commutative ring with 1 and � be a binary, reflexive,
transitive and total relation on R. Then (R,�) is called a quasi-ordered ring if
∀x, y, z ∈ R :

(QR1) 0 ≺ 1,
(QR2) xy � 0⇒ x � 0 ∨ y � 0,
(QR3) x � y, 0 � z ⇒ xz � yz,
(QR4) x � y, z � y ⇒ x+ z � y + z,
(QR5) If 0 ≺ z, then xz � yz ⇒ x � y.
Moreover, we denote the equivalence class of 0 (w.r.t. ∼) by E0.

Axiom (QR5) prevents the counterexample from above, because from 0 ≺ Y and
XY ∼ X2Y now follows X ∼ X2, contradicting the definition of � .

Remark 3.3. Note that (QR5) single-handedly implies (QR2). Indeed, if xy � 0
and x is strictly positive, then (QR5) yields that y � 0. However, we decided not
to remove this axiom in order to preserve the analogy to Definition 2.3.
Further note that our counterexample above proves that (QR5) is strictly stronger
than (QR2), even when given all the other axioms from Definition 3.2.

First of all we give two important classes as examples for quasi-ordered rings,
thereby establishing one implication of the dichotomy.

Example 3.4.

(1) Let (R,≤) be an ordered ring with support p. Then (R,�) is a quasi-ordered
ring with E0 = p.

(2) Let (R, v) be a valued ring with support q. Then x � y :⇔ v(y) ≤ v(x)
defines a quasi-order on R with E0 = q.

Proof.

(1) Comparing the definitions of ordered and quasi-ordered rings, we only have
to check axiom (QR5). Note that if y − x < 0, then (y − x)z < 0 (recall
that p is a prime ideal), so yz < xz, a contradiction. Therefore 0 ≤ y − x,
i.e. x ≤ y.



QUASI-ORDERED RINGS 5

(2) Clearly � is reflexive, transitive and total, since the order ≤ on the value
group of v has these properties. Further note that v(1) = 0 < ∞ = v(0),
thus 0 ≺ 1. This shows that (QR1) is fulfilled. For (QR2) there is nothing
to show by the previous remark. Next we establish (QR3). From x � y
follows v(y) ≤ v(x). Hence,

v(yz) = v(y) + v(z) ≤ v(x) + v(z) = v(xz),

and therefore xz � yz. The proof of (QR4) is done by case distinction.
We do the case y 6� z, the case z 6� y being similar. So let y 6� z. Then
v(z) � v(y), i.e. v(y) < v(z). Moreover v(y) ≤ v(x). Applying Lemma 2.8
yields

v(y + z) = v(y) ≤ min{v(x), v(z)} ≤ v(x+ z),

hence x+ z � y+ z. Last but not least, we have to verify (QR5). Note that
0 ≺ a means v(a) <∞. Thus, v(ay) ≤ v(ax) implies v(y) ≤ v(x), whereby
ax � ay gives us x � y. Finally x ∈ E0 if and only if v(x) = v(0) =∞, i.e.
if and only if x ∈ supp(v).

�

Notation 3.5. For the rest of this note let (R,�) always be a quasi-ordered ring.
The previous example reveals that given an order or a valuation on R, their sup-
port coincides with E0 for some suitable quasi-order on R. Our investigation will
particularly unfold that the converse is also true, i.e. E0 is either the support of
an order or else the support of a valuation on R. Therefore we refer to E0 as the
support of the quasi-order � .

We continue this section by showing that E0 is a prime ideal (see Proposition 3.8).
From this we get immediately that our definition of quasi-ordered rings indeed
generalizes Definition 1.1. Moreover, this result is crucial for our proof of the
dichotomy, as we want to extend the quasi-order � on R to the quotient field
Quot(R/E0) (see Proposition 4.3).

Lemma 3.6. If x � 0 and y ∼ 0, then x + y ∼ x. Particularly, if y ∼ 0, then
−y ∼ 0.

Proof. Since x � 0 and y ∼ 0, it holds x � y. So from y � 0 we obtain x + y � x
and from 0 � y we obtain x � x+ y via Axiom (QR4).
Now if y ∼ 0, then −y � 0 would mean that 0 = (−y)+y ∼ −y � 0, a contradiction.

�

The next result is a consequence of axiom (QR5). As a matter of fact it would have
also been possible to take it as the additional axiom to prevent the counterexample
from the beginning of this section, and then to deduce (QR5) from it. We will use
both versions throughout this note.

Lemma 3.7. Let x, y, z ∈ R. If z � 0, then xz ∼ yz ⇒ x ∼ y.

Proof. For 0 ≺ z, this is basically the same as (QR5). So suppose that z ≺ 0. By
(QR4) and the previous lemma 0 ≺ −z. Thus, (QR5) tells us −x ∼ −y. Assume for
a contradiction that x � y, without loss of generality x ≺ y. By transitivity of �
we get either x � −x,−y or y � −x,−y. If y � −x,−y, we obtain from −x � −y
that y−x � 0. If x � 0, then (QR4) yields y � x. Otherwise, the same follows from
Lemma 3.6. Hence, there is a contradiction anyway. So suppose that x � −x,−y.
Then −x � −y implies 0 � x − y, and −y � −x implies x − y � 0 via (QR4). So
x − y ∈ E0, but then also y − x ∈ E0 by the previous lemma. Thus, y − x ∼ 0.
From (QR4) (if x � 0), respectively Lemma 3.6 (if x ∼ 0), we obtain y � x, again
a contradiction. �
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Proposition 3.8. The support E0 is a prime ideal of R.

Proof. Let x, y ∈ E0. Assume for a contradiction that x + y /∈ E0. So it holds
x + y � 0, but −y ∼ 0 by Lemma 3.6. The same lemma gives the contradiction
0 ∼ x = (x + y) − y ∼ x + y � 0. Now let x ∈ E0, r ∈ R. If 0 � r, then x ∼ 0
yields xr ∼ 0 by (QR3), i.e. xr ∈ E0. If r ≺ 0, then 0 ≺ −r. Moreover, −x ∼ 0
(Lemma 3.6). Therefore (−r)(−x) = rx ∼ 0, so again rx ∈ E0. This proves that
E0 is an ideal, while axiom (QR1) states that 1 /∈ E0, i.e. E0 6= R. Finally assume
for a contradiction that xy ∈ E0, but x, y /∈ E0. We may without loss of generality
assume that 0 ≺ x, for if x, y ≺ 0, then 0 ≺ −x,−y. But if 0 ≺ x and xy ∼ 0, then
y ∼ 0 by Lemma 3.7, a contradiction. �

Corollary 3.9. Suppose that R is a field. Then (R,�) is a quasi-ordered field.

Proof. Proposition 3.8 states that E0 is a prime ideal, so E0 = {0} and (Q1) is
fulfilled. The axioms for + and · are the same in the ring and the field case. �

4. The dichotomy

As before, let (R,�) denote a quasi-ordered ring with support E0. In the first
part of this section we carry out how � can be extended to a quasi-order E on
K := Quot(R/E0). Applying Fakhruddin’s dichotomy to K, we know that E is
either an order, or else comes from a valuation on K. In the second part we deduce
that then � is also an order, respectively induced by a valuation on R.

Lemma 4.1. (R/E0,�′) is a quasi-ordered ring satisfying x ∼ 0 ⇔ x = 0, where
x �′ y :⇔ x � y.

Proof. Well-definedness of �′ is obtained from Lemma 3.6 and Proposition 3.8 as
follows: if x � y and c, d ∈ E0, these results state that x+ c ∼ x � y ∼ y + d. It is
clear that �′ is reflexive, transitive and total. Also the axioms (QR1) – (QR5) are
easily verified. Finally, x ∼ 0⇔ x ∼ 0⇔ x ∈ E0 ⇔ x = 0. �

Lemma 4.2. It holds 0 � x2 for all x ∈ R.

Proof. Simply observe that 0 � x or 0 � −x for all x ∈ R. Applying (QR3) results
in 0 � x2. �

Proposition 4.3. Suppose that (R,�) satisfies E0 = {0}. Then (K,E) is a quasi-
ordered field, where K := Quot(R) and

a

b
E
x

y
:⇔ aby2 � xyb2

extends � from R to K.

Proof. At first we make sure that E is well-defined, i.e. that ay = bx and a
b E

p
q

yields x
y E

p
q (the proof for D is the same). Thus, we have to show that ay = bx

and abq2 � pqb2 means xyq2 � pqy2. From abq2 � pqb2 follows abq2y2 � pqb2y2.
Using ay = bx, we obtain b2q2xy � pqb2y2. Axiom (QR5) gives us q2xy � pqy2.
Reflexivity, transitivity and totality of E are clear, as well as the fact that E extends
� . Next we check transitivity. So we have to verify that

a

b
E
x

y
and

x

y
E
p

q
⇒ a

b
E
p

q
,

i.e. that aby2 � xyb2 and xyq2 � pqy2 implies abq2 � pqb2.
The two conditions imply that aby2q2 � xyb2q2 and xyq2b2 � pqy2b2. Transitivity
of � yields aby2q2 � pqy2b2 and Axiom (QR5) indeed tells us abq2 � pqb2.
It remains to establish the axioms (Q1) – (Q3).
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(Q1) Show x
y ∼ 0 implies x

y = 0. Indeed, if x
y ∼

0
1 , then xy ∼ 0, so xy = 0. Since

R is integer and y 6= 0, evidently x = 0, and therewith x
y = 0.

(Q2) Show
a

b
E
x

y
, 0 E

p

q
⇒ ap

bq
E
xp

yq
.

From the two conditions follows aby2 � xyb2 and 0 � pq. The latter implies
0 � pq3. Multiplying pq3 on both sides of the inequation aby2 � xyb2 proves
the claim.

(Q3) Show
a

b
E
x

y
and

p

q
�
x

y
⇒ aq + bp

bq
E
xq + yp

yq
.

So let aby2 � xyb2 and pqy2 � xyq2. We have to prove that

(aq + bp)bqy2q2 � (xq + yp)yqb2q2,

or equivalently

aq4by2 + b2pq3y2 � xq4yb2 + py2q3b2.

From aby2 � xyb2 follows aby2q4 � xyb2q4. If we show py2q3b2 � xq4yb2,
then we are done by axiom (QR4). But this is an immediate consequence of
the assumption pqy2 � xyq2 and the contraposition of Lemma 3.7 applied
to b2q2 6= 0.

�

Lemma 4.4. If v : R/E0 → Γ ∪ {∞} is a valuation with supp(v) = {0}, then
v : R→ Γ ∪ {∞}, v(x) := v(x), is a valuation on R with supp(v) = E0.

Proof. Note that v(x) = v(x + c) for all c ∈ supp(v), because either x is in the
support of v, and then so is x+ c, or x is not and then we get the result by Lemma
2.8. It is clear that the value sets of v and v are the same. Moreover, note that

x ∈ supp(v)⇔ v(x) =∞⇔ v(x) =∞⇔ x = 0⇔ x ∈ E0.

The axioms of a valuation are easily verified. �

Lemma 4.5. If �′ is an order on R/E0 with support {0}, then x � y :⇔ x �′ y
defines an order on R with support E0.

Proof. Well-definedness follows precisely as in the proof of Lemma 4.1. It holds
x ∼ 0 ⇔ x ∼ 0 ⇔ x = 0 ⇔ x ∈ E0. The verification of the axioms of an order is
trivial, as �′ is an order by assumption. �

We can now prove the following analogue of Theorem 1.2.

Theorem 4.6. A quasi-ordered ring (R,�) is either an ordered ring or else a
valued ring (R, v) such that x � y if and only if v(y) ≤ v(x) for all x, y ∈ R.
Moreover, the support of the quasi-order coincides with the support of this order,
respectively with the support of this valuation.

Proof. Lemma 4.1 yields that (R/E0,�′) is a quasi-ordered ring with support {0}.
Let K := Quot(R/E0). By Proposition 4.3 we know that (K,E) is a quasi-ordered
field such that E extends �′ . So by exploiting Fakhruddin’s dichotomy (Theorem
1.2), we obtain that E either comes from a valuation on K or else is an order on
K. Either way, the corresponding support is trivial by definition.
In the first case there exists a valuation v′ : K → Γ∪{∞} such that for all x, y ∈ K
holds x E y ⇔ v′(y) ≤ v′(x). The restriction v of v′ to R/E0 is obviously a valuation
onR/E0 with support {0} and the same value group such that x �′ y ⇔ v(y) ≤ v(x)
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for all x, y ∈ R/E0. Lemma 4.4 implies that v : R → Γ ∪ {∞}, v(x) = v(x), is a
valuation on R with support E0. Moreover, by Lemma 4.1 and Lemma 4.4,

∀x, y ∈ R : v(y) ≤ v(x)⇔ v(y) ≤ v(x)⇔ x �′ y ⇔ x � y.
If E is an order extending �′, then (R/E0,�′) is already an ordered ring with
support {0}. Applying Lemma 4.5 yields that (R,�) is also an ordered ring with
support E0. �

Incorporating Example 3.4, we can formulate the previous theorem also as follows:

Theorem 4.7. Let R be a commutative ring with 1 and � a binary relation on
R. Then (R,�) is a quasi-ordered ring if and only if it is either an ordered ring
or else there is a valuation v on R such that x � y ⇔ v(y) ≤ v(x). Moreover, the
support of the quasi-order coincides with the support of the order, respectively with
the support of the valuation.
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