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Abstract. We construct a strongly minimal set which is not a finite cover of

one with DMP. We also prove that for a strongly minimal theory T generic

automorphisms exist iff T has DMP, thus proving a conjecture of Kikyo and
Pillay.

Recall that a strongly minimal theory T has the Definable Multiplicity Property
(DMP) if for all natural k,m and ϕ(x̄, b̄) of rank k, multiplicity m there exists a
formula θ ∈ tp(b̄) such that for all b̄′ |= θ, rk{ϕ(x̄, b̄′)} = k and mult{ϕ(x̄, b̄′)} = m.
This definition was introduced in [2], where it was asked whether every strongly
minimal set is a finite cover of one with DMP, i.e. whether for every strongly
minimal T there exists a definable equivalence relation E with finite classes such
that T/E has DMP.

In [4] Kikyo and Pillay prove that a strongly minimal T (with quantifier elim-
ination) which is a finite cover of a theory with DMP has generic automorphisms
(i.e. the theory T ∪{σ is an automorphism} has a model companion) iff T itself has
DMP. They conjectured that the same is true of any strongly minimal theory.

In the first section of this paper we construct a strongly minimal set which is
not a finite cover of one with DMP. In the second part we prove Kikyo and Pillay’s
conjecture.

1. A strongly minimal set with no DMP

In this section we slightly change the construction of [3] to obtain:

Theorem 1.1. There exists a strongly minimal theory T such that for every defin-
able infinite equivalence relation E with finite classes, T/E does not have DMP.

It seems that our construction methods can be generalized, but for the sake of
simplicity and clarity we will stick to the simplest example. We will go very briefly
through most of the definitions and standard statements, as they are practically
similar to the corresponding ones in [3].

Let L := {S,Ri, ai}i<ω be a language consisting of one ternary relation S, count-
ably many binary relations Ri and a set of constants {ai}i<ω. For any L structure
A we denote Â := A \ {ai}i<ω and say that A is L−finite if Â is finite. For an
L−finite structure A we denote R(A) := {z ∈ A3 : A |= S(z)}, r(A) = |R(A)| and
d0(A) = |Â| − r(A). Let T∀ be the following theory:

(1) d0(A) ≥ 0 for every L−finite structure A.
(2) Ri(z1, z2, z3) ⇒ z1 = ai ∧ S(ai, z2, z3).
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Let C be the class of L−finite models of T∀. For B1, B2 ∈ C and A = B1 ∩B2 we
define the free join of B1 with B2 over A, denoted B1 ⊕A B2 as the L−structure
whose universe is B1

∐
AB2 and whose relations are precisely those appearing al-

ready in B1 or B2. As usual we set for A ⊆ B ∈ C

dB(A) = min{d0(C) : A ⊆ C ⊆ B}

and A ≤ B if dB(A) = d0(A), in which case we also say that A is self-sufficient
in B. If A ≤ B and d0(B/A) := d0(A ∪ B) − d0(A) = 0 we say that B is pre-
algebraic over B. It is simply pre-algebraic if d0(B′/A) > 0 for all A ( B′ ( B. If
in addition A is minimal such that B/A is simply pre-algebraic we say that B/A is
simply minimally pre-algebraic. It is standard to check that ≤ is transitive.

The following is easy and will be used without reference. The proof is left as an
exercise:

Claim 1.2. Let F ⊆ A,B ⊆ N |= T∀. If B/F is minimally simply pre-algebraic,
A ≤ N and B′ ∈ atp(B/F )N then either B′ ∩A = F or B′ ⊆ A.

Let B/A be minimally simply pre-algebraic. Let ā :=
∧3

i=1 πi(R(B)) ∩ A for πi

the natural projection onto the ith coordinate. Let ψB/A(y) ∈ atpS(ā) isolate the
type, and φB/A(x, y) isolate atpS(B̂/ā). Let

A := {(B,A) : B/A is minimally simply algebraic}

.
We fix a function µ : A → N with the following properties:
(1) If (B,A), (B′, A′) ∈ A and A′ |= ψB/A, B

′ |= φB/A(x,A′) then µ(B,A) =
µ(B′, A′).

(2) If (B,A) ∈ A and τ is a permutation on {1, . . . , |B|} fixing A setwise then
µ(τ(B,A)) = µ(B,A).

(3) µ(B/A) ≥ max{d0(A), 2}.
If B/A is simply pre-algebraic (but not necessarily minimally so) we may abuse

the notation and write µ(B,A) meaning µ(B,F ) for the unique F ⊆ A such that
B/F is minimally simply pre-algebraic. In addition, by (2) above, there will not
be any ambiguity in referring - as we will - to µ(B,A) without specifying an enu-
meration of B and A.

Remark 1.3. The requirement that µ(B/A) ≥ d0(A) is not used explicitly in the
text, but appears implicitly in the proof of Lemma 1.5 below. The requirement that
µ(B/A) ≥ 2 does not appear in the original construction and will be only needed to
obtain Lemma 1.15.

Definition 1.4. We will denote Cµ ⊆ C the sub-class of all L−finite M |= T∀ in
which there are at most µ(B/A) pairwise disjoint realizations of atpS(B/A) for any
fixed A ⊆M and A ≤ B ∈ C minimally simply-algebraic.

The following is Lemma 3 of [3]. Both the statement and proof remain unaltered:

Lemma 1.5. Suppose that A,B1, B2 ∈ Cµ are such that A ⊆ B1 and B1/A is simply
pre-algebraic. Assume for simplicity that A = B1 ∩B2 and let E = B1 ⊕A B2 then
one of the following is true:

(1) E ∈ Cµ.
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(2) There exists F ⊆ A such that B1/F is minimally simply pre-algebraic and
disjoint C1, . . . , Cr ⊆ B2 such that atpS(Ci/F ) = atpS(B1 \ F/F ) and
r = µ(B/F ).

(3) There exists X ⊆ B2 such that X∩A 6≤ X and B1 contains an S−isomorphic
copy of X.

Concerning the adaptation of the proof to the present context we note only that
since µ depends only on the S−structure of B/A the relations Ri can be ignored
for the purpose of this lemma. The two differences with respect to the original
proof are that our structures are not finite (since they all contain the constants)
and that d0 is slightly changed. As both B1 and B2 are L−finite there is only a
finite set of constants C which contributes to the S−type of B1 ∪ B2, so we may
restrict our attention to Ê := B̂1⊕ÂC B̂2, which eliminates the first difference with
the original proof. Requiring that (keeping the notation in the statement of the
lemma) C ∩ Ci = ∅ and that X ⊆ B̂2 eliminate the second difference.

In [3] self-sufficient amalgamation was an almost immediate corollary of (the
analogue of) Lemma 1.5. In the present case this is clearly not enough, as the
(quantifier free) S−type of any tuple does not isolate its (quantifier free) type.
To obtain the self-sufficient amalgamation we add some more restrictions on our
function µ and on the class Cµ.

Notation 1.6. Let B ⊇ A be such that |B \A| <∞. We set

c(B/A) := |S(B) ∩ (A×B2 \A2)|
and

Co(B/A) := S(B) ∩ ((
⋃

i<ωai)×B2 \A2)
co(B/A) = |Co(B/A)| .

Remark 1.7. Let B/A be minimally simply algebraic and A′ ≡S A. For any B′

such that atpS(B′, A′) = atpS(B,A) there are precisely 2co(B′/A′) complete atomic
L−types pi ⊇ atpS(B′, A′) ∪ atpL(A′).

Proof. pi as above will be determined by the Ri relations it implies. By T∀(2) this
consists in, for each s ∈ Co(B/A), deciding whether |= Rπ1(s)(s) or |= ¬Rπ1(s)(s)
(π1 the projection on the first coordinate). Since the choices are independent the
remark follows. �

Now we require that 2c(B/A) | µ(B/A) and define Ĉµ ⊆ Cµ by requiring that for
every simply minimally algebraic B/A and any A ⊆ M ∈ Ĉµ there are at most
µ(B/A)/2co(B/A) disjoint realizations of atp(B/A) in M . We can now prove:

Lemma 1.8 (Self-sufficient amalgamation). Suppose that A,A1, A2 ∈ Ĉµ, A ≤ Ai.
Then there exists E ∈ Ĉµ and embeddings fi : Ai ↪→ E such that f1 �A= f2 �A and
fi(Ai) ≤ E.

Proof. The proof is easily adapted from [3]. We give the details for completeness.
We proceed by induction on |A1 −A| + |A2 −A|. Let d = dAi(A) = d0(A). If
there existed some A ( X ( A1 such that d0(X) = d then X ≤ Ai and using the
induction hypothesis twice we get the desired result.

If d0(A1) > d and there is no X as above, then there must be some b ∈ A1 \ A
such that d(b/A) = 1 (in fact, any b will do). It is immediate that in that case
A2 ∪ {b} ∈ Ĉµ and that A ∪ {b} ≤ Aib, so that we can again proceed by induction.
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It remains to deal with the case that A1/A is simply pre-algebraic, so it is
minimally simply pre-algebraic over some C ⊆ A. Since A ≤ A2 either (1) or
(2) of Lemma 1.5 must hold (as (3) would contradict A ≤ A2). If (2) is the case
then atpS(A1/A) is realized µ(A1/C) times disjointly in A2. By Remark 1.7 this
can only happen if among them are µ(A1/C)/2co(A1/C)) realizations of atp(A1/A).
Because A ≤ A2 the minimality of A1/C implies that each such realization is either
contained in A or freely joint with A over C. Since A1 ∈ Ĉµ the former case cannot
happen. Hence there is a copy of A1 \A in A2 freely joint with A over C and it is
easy to check that we can identify A1 \A with this copy of itself.

Finally, if (1) is the case then the free join of A1 with A2 over A contains at most
µ(A1/C) disjoint copies of atpS(A1/A). If no more than µ(A1/C)/2co(A1/C) realize
atp(A1/C) we are done. Otherwise by the exact same argument, one of them must
be disjoint form A and contained in A2 and we can identify A1 \A with this image
of itself. �

Corollary 1.9. There exists a (countable) structure U universal and homogeneous
with respect to (Ĉµ,≤), i.e. ∅ ≤ U and for every finite A ≤ U and A ≤ B ∈ Ĉµ

(finite) there exists an embedding f : B ↪→A U such that f(B) ≤ U .

We are now ready to give the axiomatization of the strongly minimal set we are
aiming at. To keep the axiomatization simple we will use the following notation:

For (B,A) ∈ A φB/A(x, y) be as in the definition of the function µ and set
n = |B \A| for m ∈ N we define

θm
B/A(x1,1, . . . xm,n, A) :=

∧
j1≤j2,i1 6=i2

xi1,j1 6= xi2,j2 ∧
m∧

i=1

φB/A(x̄i, A)

where x̄i := (xi,1, . . . , xi,n).
Define Tµ to be:
• T∀
• For every model M and L-finite substructure B ⊆M , B ∈ Ĉµ.
• For every model M , any L-finite B ⊆ M and B ≤ C ∈ Ĉµ such that
C/B is minimally simply pre-algebraic and such that X ∩B ≤ X whenever
X ⊂M realizes an atomic type realized in C there are µ(C/B) solutions of
atpS(C/B) which are pairwise disjoint and any other solution of atpS(C/B)
meets at least one of them. Formally, if the assumptions of the statement
hold then:

M |= (∃x̄1, . . . x̄r)θm
C/B(x̄1, . . . x̄r, B) ∧ (¬∃x̄0, . . . x̄r)θm+1

C/B (x̄0, . . . x̄r, B)

for r = µ(C/B).
• For every k ∈ N, every fixed set of constants ā := {ai1 , . . . , aik

} every
M,B,C as above and such that ā ⊆ Co(C/B) given µ(C/B) solutions of
atpS(C/B) as above there are precisely µ(C/B)/2|ā| among them satisfying
each of the 2|ā| completions of atpS(C/B) to a complete atomic type in
S ∪ {ā ∪Ri1 , . . . , Rik

}.
The last axiom scheme in the definition of Tµ introduces the main novelty of the

present construction with respect to the one in [3]. In the original construction,
if B/A is minimally simply algebraic its atomic type is isolated uniformly in A.
This is not the case in the present situation. A single axiom of this last axiom
scheme (for one q.f.-S-type of B) cannot cover all possible L-types of B. The new
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point is that other axioms, referring to specializations of B also, precisely fill in
the gaps left by the axiom referring to B itself. This relies heavily on the fact that
we have a precise count of the number of disjoint realizations of φC/B(x, y) for all
y |= ψC/B(y), with the count independent of y.

Claim 1.10. Tµ is first order.

Proof. d0 ≥ 0 can be stated as:
For every finite subset C of constants and any disjunction of atomic S-formulas

φ(x̄, ȳ) with more than |x̄| distinct literals of the form S(xi1 , xi2 , xi3) with 1 ≤ i1 ≤
i2 ≤ i3 ≤ |x|, an axiom (

∧
i 6=j xi 6= xj) → ¬φ(x̄, c̄) for any enumeration c̄ of C.

So T∀ is first order. The second axiom scheme (modulo T∀) simply bounds the
number of solutions of certain equations, so is clearly first order. By condition (1)
in the definition of µ the last two axiom schemes are given in such a way that every
instance of them is already stated in first order way.

�

Remark 1.11. Note that (once the consistency of Tµ is verified, if B ≤ M |= Tµ

and (C,B) ∈ A then we can strengthen the conclusion in the third axiom scheme.
In that case we can actually state that there are µ(C/B) solutions of atpS(C/B) in
M which are all pairwise disjoint and such that any other solution of atpS(C/B)
is a permutation of one of them.

With this in hand the following claim is an immediate corollary of self-sufficient
amalgamation (see e.g. Section 3 of [3] for more details) once we show that Tµ is
consistent:

Claim 1.12. Let M1,M2 be saturated models of Tµ of the same cardinality and Ai ≤
Mi, |Ai| < |Mi| then any isomorphism f : A1 → A2 extends to an isomorphism of
M1 with M2.

We can now prove:

Lemma 1.13. Tµ is consistent, complete and strongly minimal.

Proof. To check that Tµ is consistent we only have to show that U of Corollary
1.9 satisfies the axioms. By self-sufficient amalgamation everything is clear, except
possibly the the case where B ⊆ U is not self-sufficient and we are given B ≤ C to
embed into U . Let B̄ :=

⋂
{B′ : B ⊆ B ≤ U} and C̄ = C ⊕B B̄. If C̄ ∈ Ĉµ and

there exists X ⊆ C̄ (realized in U) such that X ∩ B̄ 6≤ X then X ∩ B 6≤ X ∩ C
(because for all c ∈ C̄ \ B̄ we have d0(c/B̄) = d0(c/B)), and there is nothing to
do. If for all X ⊆ C̄ realized in U we have X ∩ B̄ ≤ X we can easily conclude by
self-sufficient amalgamation.

By Claim 1.12 to show that Tµ is complete we only have to make sure that the
atomic type of the constants is determined and that

⋃
ai ≤ U . This follows from

the axiom that d0(A) ≥ 0 for all finite A ⊆ U .
It remains to check that Tµ is strongly minimal. We have to show that if M |= T

is saturated and A ⊆ M is small then there exists a unique 1−type with infinite
orbit under Aut(M/A). We may assume that A ≤ M (since defining Ā as above,
Ā ⊆ acl(A)). For b1, b2 ∈ M such that d(bi/M) = 1 we have by Claim 1.12 that
tp(b1/A) = tp(b2/A) so we only have to show that if d(b/A) = 0 then b ∈ acl(A).
Let b̄ minimal such that b ∈ b̄ and d0(b̄/A) = 0, then b̄/F is minimally simply pre-
algebraic for some finite F ⊆ A, and therefore has at most finitely many disjoint
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realizations in M . By the minimality of b̄/A and the assumption that A ≤ M
any two realizations of atp(b̄/A) must be disjoint, which implies that atp(b̄/a) and
therefore tp(b̄/A) has only finitely many realizations in M , as required. �

Before we proceed to to showing that Tµ has the properties we want some
comments on the construction itself are in place. First, it follows immediately
from the axiomatization that Tµ|S corresponds to the construction (of [3]) with
(S, d0, µ). Hence Tµ|S has DMP, whereas Tµ clearly doesn’t. Since in both theories
acl(A) = {a : d(a/A) = 0} it follows Tµ is a non-trivial acl-preserving expansion of
Tmu|S .

We now turn to proving satisfies the main property we are interested in:

Lemma 1.14. Tµ is not a finite cover of a theory with DMP (in particular Tµ does
not have DMP).

Proof. Let E be any definable equivalence relation with finite classes. We show
that the induced structure M∗ = M/E does not have DMP. Denote S∗ = S /E and
R∗

i = Ri /E . For a ∈M denote Sa := S(a, x1, x2). We show that R∗
i splits S∗ai

into
two infinite sets for almost all i. First, it is clear that rk{S∗ai

∩R∗
i } ≥ 1 (for if a∗i =

ai /E then for all generic (b1, b2) ∈ S∗ai
∩Ri, M∗

2 |= S∗(a∗i , b
∗
1, b

∗
2)∧R∗

i (b
∗
1, b

∗
2)). So it

will be enough to show that if b is a generic element (over C, the set of parameters
used to define E) and (b1, b2) ∈ Sb is a generic element in the corresponding fiber
then M |= S(b, b′1, b

′
2) for b′iEbi iff b1 = b′1 and b2 = b′2. Assume not then (assuming

without loss that C ≤ M) we get that d(b′1/Cb1) = 0 (for E has finite classes and
algebraic closure in M2 corresponds to the relation d(a/B) = 0), and let B ⊇ b′1 be
a minimal finite set such that d0(B/Cb1) = 0. Because, as above, b2 |̂ b1necessarily
b2, b

′
2 6∈ B and therefore d0(B/Cb1, b′2, b) < 0. We show that this cannot be:

d0(B/Cb1, b′2, b) = d0(Bb1/Cb′2, b)

so d0(Bb1/Cb′2, b) < 0, and so d0(Bb1b′2/Cb) ≤ 0 but this implies that b1 ∈ acl(b),
a contradiction.

But for generic a∗ the set S∗a∗ is strongly minimal so no DMP follows by strong
minimality of T ∗

µ . �

More generally we can prove:

Lemma 1.15. Tµ has no definable (with parameters) equivalence relations (on
singletons) with infinitely many classes with more than one point.

Proof. Assume that E is a definable equivalence relation contradicting the state-
ment of the lemma. Let C ≤ M be such that E is defined over C, and choose
b any element of an E-class generic over C. Note that for any b′ |= E(x, b) we
have b′ ∈ acl(Cb). It follows that d(b′/Cb) = 0. As b is generic over C and E is
non-trivial there exists b′ 6= b as above, and for any such b′ there exists B′ 3 b′

such that B′/Cb is simply pre-algebraic. Since µ(B′/Cb) ≥ 2 there exist disjoint
B1, B2 such that atp(B′/Cb) = atp(Bi/Cb) (this uses also the third bullet of the
axiomatization of Tµ which assures that since Cb is self-sufficient the number of
disjoint solutions of atp(B′/F ) is precisely µ(B′/F ) for F ⊆ Cb such that B′/F
is minimally simply pre-algebraic). Since b is generic over C and C ≤ M also
Cb ≤M . Hence tp(B1/Cb) = tp(B2/Cb). In particular, there are bi ∈ Bi such that
|= E(bi, b).
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By transitivity of E it follows also that d(b2/Cb1) = 0 and we choose a minimal
set B1,2 witnessing it. We show that d0(B1B2B1,2b/C) = 0, which will contradict
the fact that b 6∈ acl(C). By the minimality of B1,2 and the fact that b2 ∈ B1,2 ∩
B2 it follows that d0(B1,2/CB1B2) ≤ 0 and equality holds iff B1,2 ⊆ B1B2. If
d0(B1,2/CB1B2) < 0 then d0(B1B2B1,2b/C) = 0, and we have nothing to do.
Otherwise it follows that d0(B2/CB1b) < 0, and the contradiction is obtained in a
similar way. �

Examining the proof of the last lemma we see that in precisely the same way
can prove the stronger result:

Lemma 1.16. Let D |= Tµ and S ⊆ Dn a quantifier free definable strongly minimal
set. If E is a definable equivalence relation on S with finite classes and b̄1 ∈ S is
generic over all the data then there exists b ∈ b̄1 such b ∈ b̄2 for all b̄2 |= E(b̄1, y)
and b is generic over all the data.

In the last lemma b̄1 ∩ b̄2 means the intersection of the ranges of the tuples
b̄1, b̄2. Also note that if C ≤ D is such that S,E are definable over C then, as S is
quantifier free definable, for any b̄ ∈ S generic over C we have that Cb̄ ≤ D. Hence
the proof of Lemma 1.15 goes through unaltered if instead of taking a generic b ∈ D
(as we did there) we take b̄ ∈ S generic.

The following remark shows that the assumption that S in the previous lemma
was quantifier free definable does not really harm the generality.

Remark 1.17. The reason for requiring that S be quantifier free definable is to
assure that for C ≤ D and generic b |= S we have Cb ≤ D. Note, however, that
if S ⊆ Dn is any strongly minimal subset and E an equivalence relation with finite
classes on S then there exists m ≥ 0, a quantifier-free definable strongly minimal
set S′ ⊆ Dn+m and an equivalence relation E′ with finite classes on S′ such that
π(S′) = S and E′ is the pre-image of E under π, the projection on the first n
coordinates.

Combining Lemma 1.16 with the last remark we get:

Lemma 1.18. Tµ is not bi-interpretable with any strongly minimal theory with
DMP.

Proof. We easily reduce to proving that if S is a strongly minimal set definable
in Tµ then for every infinite equivalence relation E with finite classes S/E does
not have DMP. By the last remark this reduces to proving the above for S that is
quantifier free definable. Hence, we may take S,E as in lemma 1.16, and adding
constants to the language we may also assume them to be ∅-definable. Assume first
that if b̄1 ∈ S is generic and |= E(b̄1, b̄2) then their ranges differ (i.e. there exists
b ∈ b̄1 \ b̄2). Let b ∈ b̄1 ∩ b̄2 be as provided by Lemma 1.16. And assume that b is
the ith1 element of b̄1 and the ith2 element of b̄2. Then b̄i is pre-algebraic over b. If
ϕij

is the formula isolating atp(b̄i/b) then it also isolates (in its rank) tp(b̄i/b̄3−i)
whence for all b̄′i |= ϕij

we have |= E(b̄′i, b3−i). We obtained: if b̄1 ∩ b̄2 = {b} and b
is the ith1 element of b̄1 and the ith2 element of b̄2 then E(b̄1, b̄2) iff

∧
1,2 b̄i |= ϕi(x, b).

Repeating the same process for all possible i, j we get a complete description of E.
We leave it as an exercise to check that in that case S/E has no DMP.

We now have to check the case that for some b̄1 ∈ S generic and b̄2 |= E(b̄1, y)
the ranges of the two tuples agree. Let τ be a permutation such that τ(b̄1) = b̄2
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then E is clearly preserved under the action of the group generated by τ . So let G
be the maximal permutation group which acts on the classes of E. Let EG be the
equivalence relation EG(b̄1, b̄2) ⇐⇒ b̄1 = τ b̄2 for some τ ∈ G. If we quotient out
by EG we are in a situation very similar to the one treated above, and the claim
follows, more or less as above. �

Remark 1.19. Note that the theory TS
µ := Tµ|S is precisely the theory constructed

in [3] (for a µ-function satisfying some additional requirements). Therefore TS
µ is

strongly minimal with DMP and

a ∈ aclT S
µ
(A) ⇐⇒ d(a/A) = 0.

Since d(a/A) = 0 depends on S alone in Tµ it follows that the latter is a non-trivial
acl-preserving expansion of TS

µ .

It may be worth mentioning that the above example indeed does not have DMP
but every reduct thereof to a finite sub-language does. It seems, however, that this
can be remedied rather easily. Instead of requiring that µ depends only on L|S we
allow µ to depend onRi as well (subject to the obvious requirement that if Aa, . . . Ak

are all the possible specialization of some L̂-finite structure A, B/A is minimally
simply pre-algebraic and atpS(Bi/Ai) = atp(B/A) then

∑
i µ(Bi/Ai) = µ(B/A)).

If µ is chosen generically enough, then Ri will be reconstructible from Tµ|S . In the
following paragraphs we sketch a different construction which gives the same result.
Our construction is a variant of the construction of [1] in which we integrate the
ideas used above.

We work in a two sorted language, the sorts being S,E in a language with two
function symbols L = {f, π}. Let T be the theory asserting that π : S → E has
infinite fibers; f : S → S preserves the fibers of π and is generically 1:1, but for
each prime p ∈ N there is a unique special p1-fiber on which either fp(x) = x
or fk(x) 6= f j(x) for all j 6= k ∈ Z, and both cases occur infinitely often. For
convenience we will add constants sp ∈ E such that π−1(sp) is the special p-class.
These constants will be used just to simplify the construction, then they will be
discarded. We leave it as a simple exercise to check that T is a complete ω-stable
theory of rank 2 with weak DMP (see [1]) for the definition).

We add a new sort D and a binary relation R ⊆ S × D. Define for a finitely
generated L ∪ {R} structure A

d0(A) = MR(A \D) + |D ∩A| − |R(A)|.
We define A ≤ B as usual, with the additional requirement that A is a substructure.
We say that B/A pre-algebraic if:

(1) B/A is finitely generated.
(2) A ≤ B and d0(B/A) = 0. If in addition
(3) B/A is minimal such that the above hold we say that B/A is simply pre-

algebraic.
(4) If also A is minimal then B/A is minimally simply pre-algebraic.

The following is easy:

Claim 1.20. If B/A is simply pre-algebraic there exist finite b ⊆ B and a ⊆ A
such that:

• b generates B (over A).
• b, a are closed under πi.
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• For any d ∈ B if R(d, c) for some c ∈ A then c ∈ a and d ∈ B.
• If c := π1(d) ∈ A for some b ∈ B then c ∈ a.

If we require that b is minimal satisfying the above then it is unique, and similarly
for a.

We leave the proof as an exercise.

Definition 1.21. A finite tuple b/A is (simply) pre-algebraic if the structure it
generates is pre-algebraic and b satisfies the conclusions of the last claim.

Remark 1.22. Let b/A be simply pre-algebraic. There exists a unique a ⊆ A
such that b/a is minimally simply pre-algebraic. The atomic type of b/a is isolated.
We will identify minimally simply-pre algebraic tuples with the (atomic) formulas
isolating them. Note also that if b/a is minimally simply pre-algebraic isolated by
ϕ(x, a) there exist a formula θ ∈ atp(a) such that for all a′ |= θ if b′ |= ϕ(x, a′) then
b′/a′ is minimally simply pre-algebraic.

Note that the free amalgam of L ∪ {D} structures can be defined precisely as
above.

The following is an immediate adaptation of the Algebraic Amalgamation Lemma
of [3] (see also above) to the present context. We state it in a slightly different way.

Lemma 1.23. Let A = B1∩B2 be L∪{D} structures, A ≤ B1 and E = B1⊕AB2.
Let d ⊆ E and ϕ(x, d) be such that a |= ϕ(x, d) implies that a/d is minimally simply
algebraic. There exists a natural number N depending on ϕ (but not on B1, B2)
such that for any d ⊆ E one of the following holds:

(1) d ⊆ B2.
(2) There exists a set X ⊆ B2 such that X ∩ A � X and B1 contains an

isomorphic copy of X.
(3) There are at most N disjoint realizations of ϕ(x, d) in E.

We are now in a situation very much like the the one we encountered in the
first construction of this paper. To see this, note that if b̄/ā is minimally simply
pre-algebraic, θ(ā) isolates the atomic type of ā/∅ and ϕ(x̄, ȳ) isolates the atomic
type of b̄/ā then for any ā′ |= θ there are at most 2|b̄| different atomic types in
ϕ(x̄, ā′) which are not outright algebraic (i.e. of negative relative pre-dimension).
Ultimately, this follows from the fact that T has weak DMP, but this can be easily
verified directly, by checking that for any such ā′, b̄′ |= ϕ(x̄, ā′), and any b ∈ b̄′

such that π(b′) = sp ∈ ā′, deciding whether or not fp(b′) = b′ or not determines
a complete non-algebraic atomic type. Moreover, all possible such completions are
admissible. This allows us to define c(b̄/ā) exactly as above.

Finally, it is easy to check that if b̄/ā is minimally simply pre-algebraic, and
sp ∈ ā then there a minimally simply pre-algebraic couple b̄′/ā′ such that sp /∈ ā′

and b̄/ā is a specialization of b̄′/ā′. Call a minimally simply pre-algebraic couple
b̄/ā stationary if sp /∈ ā of any prime p ∈ N. Call an atomic ϕ(x̄, ȳ) stationary if it
is minimally simply pre-algebraic and is satisfied by some stationary couple. It is
standard book-keeping to enumerate (in a non-redundant way) stationary formulas
so that every stationary couple satisfies precisely one of them. From this point on,
we can proceed in choosing µ satisfying precisely the same requirements as we did
above, and proceed with the construction accordingly, using Lemma 1.23.
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2. DMP and generic automorphisms

Let T be any strongly minimal theory with QE, and Tσ := T ∪ {σ is an
automorphism}. Denote by TA the model companion of Tσ if it exists. In [4]
the following is shown:

Proposition 2.1. Let T be a strongly minimal theory, M |= T a saturated model.
Assume that for some definable equivalence relation E with finite classes Th(M/E)
has DMP. Then TA exists iff already T has DMP .

In their paper Kikyo and Pillay conjecture that indeed this is true in general,
i.e. that for strongly minimal theories DMP is equivalent to the existence of TA,
and remark that if it were true that every strongly minimal set is a finite cover of a
strongly minimal set with DMP then the conjecture will follow. We show that the
conjecture is true in general. We will use:

Lemma 2.2. Let G be a finite group, H < G a subgroup such that H represents
every conjugacy class of G (i.e. for every τ ∈ G there exists π ∈ G such that
πτπ−1 ∈ H) then H = G.

Proof. By assumption G =
⋃
HG. Now we compute:

|G| = |
⋃
HG| ≤ (|H| − 1) |G/H|+ 1 = |G| − |G/H|+ 1 ≤ |G|

and equality holds iff H = G. �

We will use the following characterization of DMP which already appears (some-
what implicitly) in [2]:

Lemma 2.3. Let T be a strongly minimal theory, then the TFAE:
(1) T has DMP.
(2) Let P := P (a) be a strongly minimal set, G a finite group acting regularly

and definably on P , D a strongly minimal set definable over ∅ and f : P →
D a definable map such that the fibers of f are the orbits of G (except
finitely many). Assume that:

(*) For almost all G−orbits on P the opposite action of G on the orbit
is automorphic

Then there exists a formula ϕ ∈ tp(a) such that for all a′ |= ϕ (*) is true
of P (a′).

Proof. If T does not have DMP then (2) of the lemma does not hold: from [2] we
know that NDMP is witnessed by a strongly minimal set P (a) = ψ(x, a). Assume
wlog that for a generic b |= ψ(x, a), b = (b1, . . . , bn), b1/a is strongly minimal and
b ∈ acl(ab1). Let π1 : P (a) → D (where D is x = x) be the projection onto
the first coordinate. There is no harm in assuming that for all b1, b2 ∈ P (a) if
π1(b1) = π2(b2) := b1 then there exists some σ ∈ Sym(n) such that σ(1) = 1 and
σ(b1) := (b1σ(1), . . . , b

1
σ(n)) = b2. Furthermore, we may assume that for almost all

d ∈ D, |π−1(d)| = m for some constant m ∈ N. Finally, choose d ∈ D generic over
a and let

G = {σ ∈ Sym(n− 1) : (d, b2, . . . , bn) ∈ P (a) ⇒ (d, bσ(2), . . . , bσ(n)) ∈ P (a)}

Since we have chosen d generic over a it follows that G acts regularly (and obviously
definably) on almost all the fibers of π1. Note also that it cannot be that |G| = 1,
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as this would contradict the assumption that P (a) is a counter example to DMP.
It is now immediate to check that by NDMP this is a counter example for (2).

For the other direction, assume that T has DMP and that P (a), D, f and G are
as in (*). We have to show that the conclusion of (2) holds. Choose θ ∈ tp(a)
such that for all a′ |= θ, P (a′) is strongly minimal and we may further restrict
θ so that for all (b1, . . . , bn) ∈ P (a′), b1 is interalgebraic with bi for all i and
that (bσ(1), . . . , bσ(n)) ∈ P (a′) ⇐⇒ σ ∈ G (we may of course think of G as a
permutation group, in accordance to its action on a generic fiber of P (a)), then
by strong minimality of P (a′) the opposite action of G on the fibers of P (a′) is
automorphic almost everywhere, and we are done. �

Now we are ready to prove:

Theorem 2.4. Let T be a strongly minimal theory, then TA exists iff T has DMP.

Proof. The proof that if T has DMP then TA exists appears in [4]. For the other
direction suppose that TA exists. Let P (a) be strongly minimal, we have to find
θ ∈ tp(a) such that a′ |= θ ⇒ P (a′) is strongly minimal. As in the direction ”⇒”
of the previous lemma we can define a map π1 : P (a) → D with finite fibers, and
assume that any two elements in a generic fiber differ only by a permutation, and
let G be the corresponding permutation group. Let θ ∈ tp(a) be such that:

• For all a′ |= θ, P (a′) has rank 1;
• If (b1, . . . , bn) ∈ P (a′) then for all i, bi is interalgebraic with b1 and
• For all τ ∈ Sym(n− 1), (b1, bτ(2), . . . , bτ(n)) ∈ P (a′) ⇐⇒ τ ∈ G. In other

words, G acts regularly (and, of course, definably) on all the fibers of π1(a′)
for all a′ |= θ.

Let M |= TA and let a′ ∈ θ(M) be such that σ fixes a′ (pointwise). For
each τ ∈ G there exists bτ := (b1, . . . , bn) ∈ P (a′)M such that σ(b1) = b1 and
σ(bi) = bτ(i) for i > 1 (bτ exists since a′ |= θ implying that G acts automorphically
on the fibers of π1 and using the fact that M is existentially closed we can find bτ
as required).

Finally we show that this θ satisfies the requirements. Let a′ |= θM for a large
saturated M |= T . Expand M to M ′ |= TA in such a way as to have σ �aclT (a′)= Id.
Let τ ∈ G and take bτ := (b1, . . . , bn) ∈ P (a′) as promised in the previous paragraph
(i.e. σ(b1) = b1 and σ(bi) = bτ(i) for i > 1), and let (d1, . . . , dn) be any generic of
P (a′). Then tp(d1/ aclT (a′)) = tp(b1/ aclT (a′)) (both being generics of D) so there
is some α ∈ Aut(M/ acl(a′)) with α(b1) = α(b2) then α−1τa acts automorphically
on the fiber above d1. since α was an automorphism, this implies that the subgroup
of Gop acting by automorphisms on the fiber of d1 meets every conjugacy class of
G, so by what we have already shown, this implies that Gop acts by automorphism
on the fiber of d1. By the previous lemma this implies that T has DMP. �
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