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Abstract

Abstract. We consider structures A consisting of an abelian group
with a subgroup AP distinguished by a 1-ary relation symbol P , and
complete theories T of such structures. Such a theory T is (κ, λ)-
categorical if T has modelsA of cardinality λwith |AP | = κ, and given
any two such models A,B with AP = BP , there is an isomorphism
from A to B which is the identity on AP . We classify all complete the-
ories of such structuresA in terms of the cardinal pairs (κ, λ) in which
they are categorical. We classify algebraically the A of finite order λ
with AP of order κ which are (κ, λ)-categorical.

AMS Subject Classification: 03C35, 20K01, 20K35.

The paper falls into four parts. Part I introduces the definition of (κ, λ)-
categoricity and sets up the needed machinery. Part II shows that (κ, λ)-
categorical theories of pairs of abelian groups must satisfy certain con-
ditions which depend on κ and λ. In Part III we show that the condi-
tions derived in Part II are not only necessary but also sufficient for (κ, λ)-
categoricity, and we draw some corollaries. The main results here are in
section 14, which describes the possible relative categoricity spectra of the-
ories of pairs of abelian groups, and for each spectrum gives a structural
description of the abelian group pairs involved. Part IV gives a complete
classification of the finite relatively categorical p-group pairs where p is an
odd prime, and also when p is 2 under the further assumption that AP is a
characteristic subgroup of A.
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Part I

Introductory

1 Relative categoricity

A complete theory is a consistent first-order theory whose models are all
elementarily equivalent. We write A ≡ B when the structure A is elemen-
tarily equivalent to B, and A 4 B when A is an elementary substructure of
B. The complete first-order theory of A, Th(A), is the set of all first-order
sentences that are true in A.

Except where we say otherwise, T is a complete theory in a countable
first-order language L(P ), one of whose symbols is a 1-ary relation symbol
P ; L is the language got by dropping P from L(P ); and for every model
A of T , the set PA of elements of A which satisfy the formula P (x) is the
domain of a substructure AP of the reduct A ↾ L. We call AP the P -part of
A. Since a sentence is true in AP if and only if its relativisation to P is true
in A, the complete theory Th(AP ) is determined by T ; we write it as TP .

We write κ, λ etc. for cardinals. The cardinality of a structure A is |A|.
By a (κ, λ)-structure (or a (κ, λ)-model if we are talking about models of T )
we mean an L(P )-structure A with |AP | = κ and |A| = λ.

We say that T is (κ, λ)-categorical if T has (κ, λ)-models, and whenever
A,B are any two such models with AP = BP , there is an isomorphism
from A to B over AP (i.e. which is the identity on AP ).

We say that T is relatively categorical if whenever A,B are any two mod-
els of T with AP = BP , there is an isomorphism from A to B over AP .

Lemma 1.1 If T is (κ, λ)-categorical and A is a (κ, λ)-model of T , then every
automorphism of AP extends to an automorphism of A.
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Proof. Let α be an automorphism of AP . Construct a structure B and
an isomorphism γ : A → B so that AP = BP and γ extends α−1. By
assumption there is an isomorphism β : A → B over AP . Then γ−1β is an
automorphism of A extending α. �

We will sometimes describe a structure A as having a property when
its complete first-order theory Th(A) has the property; for example ‘A is
relatively categorical’ means ‘Th(A) is relatively categorical’.

The relative categoricity spectrum of a theory T in L(P ) is the class of pairs
of cardinals (κ, λ) such that T is (κ, λ)-categorical; we write it as RCspec(T ).
Section 14 will identify the possible relative categoricity spectra of theo-
ries of abelian group pairs. The analogous question about ordinary (non-
relative) categoricity for countable first-order theories was the content of
Łoś’s conjecture, which Michael Morley proved in [9]. In Morley’s work
this question was the key to unlocking the structure of uncountably cate-
gorical theories. For us, relative categoricity spectra will perform a similar
service in the study of abelian group pairs.

2 Abelian groups

Henceforth L is the first-order language of abelian groups, with function
symbols +, − and constant symbol 0.

We use standard abelian group notation, as for example in Fuchs [3].
We write 0 for the trivial group; if B and C are subgroups of the abelian
group A, we say that B and C are disjoint when B ∩ C = 0. We write
A[n] for the subgroup of A consisting of the elements a such that na = 0.
An element a of A is m-divisible if a = mb for some element b of A. If
b1, . . . , bn are elements of a group B, then 〈b1, . . . , bn〉 means the subgroup
of B generated by b1, . . . , bn; when B and C are subgroups of a group A,
we write B + C for 〈B ∪ C〉, the smallest subgroup of A containing B and
C . A group B is bounded if for some finite n, nB = 0; the least such n
is the exponent of B. If B is a torsion group, then B is the direct sum of
its p-components, B =

⊕

p prime Bp, and this decomposition is unique. We
write Q for the additive group of rationals, Jp for the additive group of p-
adic integers, Z(pk) for the cyclic group of order pk, Z(p∞) for the Prüfer
p-group and A(µ) for the direct sum of µ copies of the group A.

We use [5] Appendices A and B for facts on the first-order theories of
abelian groups. A key result is that every ω1-saturated abelian group is
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pure-injective ([5] Theorem 10.7.3).
The following results are now classical. See Macintyre [8] for (a) and

(b), while (c) is immediate from the Ryll-Nardzewski theorem.

Theorem 2.1 Let T be a complete theory of infinite abelian groups.

(a) T is ω-stable if and only if every model of T is the direct sum of a divisible
group and a bounded group.

(b) T is uncountably categorical if and only if one of the following holds:

(i) Every model of T is a direct sum of a finite group and an infinite ho-
mocyclic group Z(pk)(µ);

(ii) every model of T is a direct sum of a finite group, a divisible torsion-
free group (possibly trivial), and divisible p-groups of finite rank for
each prime p.

(c) T is ω-categorical if and only if every model of T is bounded.

In any first-order language, a formula is said to be positive primitive, or
more briefly p.p., if it has the form ∃x̄

∧

i∈I φi where each φi is atomic. A
subgroup B of an abelian group A is pure if and only if for every tuple b̄ of
elements of B and every p.p. formula φ(x̄), A |= φ(b̄) implies B |= φ(b̄) (cf.
Hodges [5] p. 56).

Let A be an abelian group and p a prime. If k is a natural number or ∞,
we define pkA by induction on k:

pA = {pa : a ∈ A}; p0A = A; pk+1A = p(pkA); p∞A =
⋂

k<ω

pkA.

The p-height of an element a of A, htpA(a), is the k < ω such that a ∈ pkA \
pk+1A, or ∞ if there is no such k. We put ∞ + 1 = ∞. (This follows
Eklof and Fisher [1]. Fuchs [3] continues the definitions of p-heights into
the transfinite ordinals.) We write pnA[p] for (pnA)[p].

We will say that an abelian groupA is divisible-plus-bounded ifA is the di-
rect sum of a divisible group and a bounded group. Divisible-plus-bounded
groups appeared in Theorem 2.1 and they will play a central role in this pa-
per.

The following lemma gives some group-theoretic characterisations of
divisible-plus-bounded groups.

Lemma 2.2 Let A be an abelian group. The following are equivalent:
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(a) A is divisible-plus-bounded.

(b) For some positive integer m, mA is divisible.

(c) There is a positive integer m such that mA = mnA for all positive integers
n.

(d) The number of pairs (p, n), such that p is prime and n is a positive integer
such that |pnA/pn+1A| > 1, is finite.

(e) There is a finite k such that for each prime p, the p-heights of elements of
A are all either ∞ or 6 k; and for all but finitely many primes p the p-
component of A is divisible.

Proof. (a) ⇒ (b) is by taking for m the exponent of the bounded part of
A. Then (b) ⇒ (c) is immediate.

(c) ⇒ (d): If (d) fails for one prime p and infinitely many n, then for
every positive integer m we have mA 6= mpA, since multiplication by a
number relatively prime to p makes no difference to p-heights. If (d) fails
for infinitely many primes, then for every positive integermwe havemA 6=
qmA for some q relatively prime to m, for the same reason.

(e) is a paraphrase of (d).
(e) ⇒ (a): If (e) holds with an integer k, then take m divisible by pk+1

for the finitely many exceptional primes p. If a ∈ mA then a has infinite
p-height for every prime p, and by Euclid it follows that a is divisible by
every positive integer. In particular for every prime p there is b such that
mpb = a, and so a is pc for an element c = mb of mA. Therefore mA is
divisible, proving (b). To derive (a), choose a subgroup B of A which is
maximal disjoint from mA. Then A = mA ⊕ B, and mB ⊆ mA so that
mB = 0 and B is bounded. �

If an abelian group satisfies (c) or (d) in Lemma 2.2, then clearly so does
every group elementarily equivalent to A. So the class of divisible-plus-
bounded groups is closed under elementary equivalence. Also Th(A) dis-
tinguishes between (a) and (b) in the following corollary.

Corollary 2.3 Suppose the abelian group A is ω1-saturated and not divisible-
plus-bounded. Then one of the following holds:

(a) There is a prime p such that |pkA/pk+1A| > 1 for all k < ω; and A has a
direct summand of the form Jp.
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(b) For each prime p there is a finite kp such that pkpA = pkp+1A; and there
are a strictly increasing sequence of primes (qi : i < ω) and a sequence
(mi : i < ω) of positive integers such that A has a direct summand which is
the pure-injective hull of the direct sum

⊕

i<ω Z(qmi

i ).

Proof. If there is a prime p such that all pkA/pk+1A are nontrivial, then
ω1-saturation guarantees the existence of an element a ∈ A which has infi-
nite order but is not divisible by p. Comparison with the structure theory
of pure-injective groups ([3] §40) shows that Jp must be a direct summand
of A. (Since Jp ⊕ Q(ω1) is ω1-saturated but not divisible-plus-bounded, this
case does occur.)

If there is no such p, then for each prime p there is a finite kp such that
pkpA = pkp+1A. But then by (d) of the lemma, there must be infinitely
many primes q such that for some finite m, qmA 6= qm+1A = qm+2A. Again
comparison with the structure theory of pure-injective groups completes
the case. �

The next lemma lists some properties of the complete theories of divisible-
plus-bounded abelian groups.

Lemma 2.4 Let T be a complete first-order theory of abelian groups. The follow-
ing are equivalent:

(a) Some (or all) models of T are divisible-plus-bounded.

(b) T has finite models or is ω-stable.

(c) Every model of T is pure-injective.

(d) For every model B of T , Ext(Q, B) = 0.

Proof. If (a) holds, then we can verify (b). Also both bounded and
divisible abelian groups are pure-injective, and a direct sum of two pure-
injectives is pure-injective, so that (c) holds too, and hence also (d) by [3]
Proposition 54.1.

If (a) fails, then by (c) of the previous lemma there is an infinite in-
creasing sequence (n0, n1, . . .) of positive integers such that for each i < ω,
ni+1A is a proper subgroup of niA. Thus the cosets of the niA (i ∈ ω) form
an infinite branching tree. There are continuum many branches, so that
in a countable model B of T not all the branches are realised by elements.
Hence (b) fails, and we infer (a) ⇔ (b).

It remains to complete the cycle (a) ⇒ (c) ⇒ (d) ⇒ (a) by proving (d)
⇒ (a). Suppose (a) fails and B is a countable Szmielew model of T (cf. [5]
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p. 663f). Then B has either infinitely many pairwise non-isomorphic cyclic
direct summands, or for some prime p a direct summand of the form Z(p)

(the localisation of Z at p, which is not a pure-injective group). In either
case (d) fails (by [3] Corollaries 54.4,5). �

An abelian group B satisfying the condition of (d) of the lemma is said
to be cotorsion (Fuchs [3] p. 232).

The next lemma describes how divisible-plus-bounded groups behave
in short exact sequences.

Lemma 2.5 Suppose A is an abelian group and B a subgroup of A.

(a) If A is divisible-plus-bounded then A/B is divisible-plus-bounded.

(b) SupposeA is divisible-plus-bounded. If there is a positive integer k such that
for all positive n, every element of B that is kn-divisible in A is n-divisible
in B, then B is divisible-plus-bounded. In particular B is divisible-plus-
bounded if either it is a pure subgroup of A, or A/B is bounded.

(c) If B and A/B are divisible-plus-bounded then A is divisible-plus-bounded.

Proof. (a) Suppose mA is divisible. Then m(A/B) = (mA + B)/B ∼=
mA/(mA ∩ B), which is divisible since it is a homomorphic image of a
divisible group.

(b) Assume there is k as stated, and let m be a positive integer such
that mA is divisible. We show that mB is divisible. Let b be in B and n a
positive integer. Then mb ∈ mA ∩ B. By divisibility there is a ∈ A such
that mb = knma. So by assumption there is c ∈ B such that mb = nmc, as
required.

If B is pure in A then the assumption holds with k = 1. If k(A/B) = 0
and b = kna with b ∈ B and a ∈ A, then ka ∈ B and b = n(ka), so that
again the assumption holds.

(c) Suppose kB and m(A/B) are divisible. We show that kmA is divis-
ible. Taking any a ∈ A, consider a positive integer n. By assumption on
A/B there is c ∈ A such that ma+B = nmc+ B, hence ma = nmc+ b for
some b ∈ B. Then kma = knmc + kb. By assumption on B there is d ∈ B
such that kb = nmkd, and so kma = nkm(c+ d) as required. �

We give two easy counterexamples to strengthenings of the previous
two lemmas. They motivate several of the constructions in this paper.
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Example 2.6 (a) A divisible with subgroup B that is not divisible-plus-
bounded. (This is impossible when B is pure in A or A/B is bounded,
by Lemma 2.5(b).)

A is Q and B is Z.

(b) A nonsplit short exact sequence B −→ A −→ Z(p∞) with B bounded.
(This is impossible with Q in place of Z(p∞), by Lemma 2.4(d).)

A is Z(p∞) and B is A[p].

3 Group pairs

Definition 3.1 (a) By a group pair we mean an L(P )-structure A which is
an abelian group with AP a subgroup.

(b) A homomorphism h : A → B of group pairs is a homomorphism
of abelian groups such that hAP ⊆ BP . (Then isomorphisms, short
exact sequences etc. are defined in the obvious way.)

(c) We say that a group pair A is bounded over P if the group A/AP

is bounded. (And likewise for other notions where the meaning is
clear.)

(d) IfA is a group pair and T is Th(A), we write TP for Th(AP ) and T/TP

for Th(A/AP ). Since AP and A/AP are both interpretable in A, they
depend only on T .

As noted earlier, we say that a complete theory has a property when
all its models have the property. Thus for example every complete theory
of a divisible-plus-bounded group is pure-injective. It’s clear that if A is
a group pair that is bounded over P , then every group pair elementarily
equivalent to A is also bounded over P ; so in this case we will say that
Th(A) is bounded over P , or that T/TP is bounded (where T is Th(A)).

Also if A is a group pair, we describe A as divisible (torsion, etc.) if its
reduct A ↾ L is a divisible (torsion, etc.) abelian group.

A good deal of the model theory of abelian groups carries over imme-
diately to group pairs in the language L(P ). For example if φ(x0, . . . , xn−1)
is a p.p. formula of L(P ) with no parameters and A is a group pair, then
{ā : A |= φ(ā)} is a subgroup φ(An) ofAn; subgroups of this form are called
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p.p. subgroups ofA. By the Baur-Monk invariant φ(x̄)/ψ(x̄) ofA we mean the
cardinality of the quotient group

φ(An)/(φ(An) ∩ ψ(An)),

counted as either finite or ∞. Note that by replacing ψ by a p.p. formula
logically equivalent to the conjunction φ ∧ ψ, we can assume that every
Baur-Monk invariant is the cardinality of a quotient group φ(An)/ψ(An)
where φ and ψ are p.p. formulas such that ψ entails φ. An invariant sentence
is a sentence of L(P ) expressing that a certain Baur-Monk invariant has
value 6 k, where k is a positive integer.

The same proof as for modules (e.g. [5] section A1) gives:

Theorem 3.2 For every formula φ(x̄) of L(P ) there is a boolean combination
φ′(x̄) of invariant sentences and p.p. formulas of L(P ), which is equivalent to
φ(x̄) in all group pairs. Every complete theory of group pairs is stable. �

Corollary 3.3 Let A be a group pair. If Th(A) has a (κ, λ)-model with ω ≤ κ <
λ, then Th(A) has a (κ′, λ′)-model whenever ω ≤ κ′ ≤ λ′.

Proof. This follows from Shelah [11] Conclusion V.6.14(2) (noting the
assumption on his p. 223 that T is stable). �

In the next corollary and henceforth, ‘pure’ in group pairs is defined as
after Theorem 2.1, but with group pairs and L(P ) instead of abelian groups
and their first-order language L.

Corollary 3.4 Suppose A ⊆ B ⊆ C are group pairs. If A ≡ C , A is pure in B
and B is pure in C , then the inclusions are elementary embeddings. In particular
if A ≡ C , A ⊆ C and the inclusion is pure, then A 4 C .

Proof. Since A ≡ C , A and C have the same Baur-Monk invariants.
Suppose ā is a tuple of elements of A, and A |= χ(ā). By Theorem 3.2,
χ is equivalent in all group pairs to a boolean combination of invariant
sentences and p.p. formulas. Since A is pure in B and B is pure in C , ā
satisfies the same p.p. formulas in B and C as it does in A. So C |= χ(ā),
showing that A 4 C .

To complete the proof it suffices to show that B has the same Baur-
Monk invariants as A and C , since then A ≡ B ≡ C by Theorem 3.2 again.
Consider the quotient group

φ(Bn)/ψ(Bn)
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where φ, ψ are p.p. formulas such that ψ entails φ. Since A is pure in B,
φ(An) = φ(Bn) ∩ An and ψ(An) = ψ(Bn) ∩ An. So by the Second Isomor-
phism Theorem

φ(An)/ψ(An) = (φ(Bn) ∩An)/(φ(Bn) ∩An ∩ ψ(Bn))
∼= ((φ(Bn) ∩An) + ψ(Bn))/ψ(Bn) ⊆ φ(Bn)/ψ(Bn).

It follows that each Baur-Monk invariant of A is 6 the corresponding in-
variant of B. The same argument shows the same for B and C . Since A
and C have equal invariants, we can replace the 6 by =. �

We close this section with four examples of group pairs. The relative
categoricity spectra of the complete theories of these group pairs are easy
to calculate directly. It will turn out in section 14 below that they illustrate
all the possible nonempty relative categoricity spectra for theories of group
pairs where the cardinals involved are infinite. (But not all examples are as
straightforward as these.)

Example 3.5 A is Z
(ω)
2 ⊕Q(ω) and AP is Z

(ω)
2 . The relative categoricity spec-

trum is the class of all pairs (κ, λ) with ω 6 κ < λ. Note that (ω, ω) is not in
the spectrum, because Q ≡ Q(ω).

Example 3.6 A is Z
(ω)
2 ⊕Z

(ω)
3 and AP is Z

(ω)
2 . The relative categoricity spec-

trum is the class of all pairs (κ, λ) where either ω 6 κ < λ or ω = κ = λ.

Example 3.7 A is Z
(ω)
2 ⊕Z

(ω)
3 ⊕Z

(ω)
5 andAP is Z

(ω)
2 . The relative categoricity

spectrum consists of the single pair (ω, ω).

Example 3.8 A is Z
(ω)
4 and AP is 2A. The relative categoricity spectrum is

the class of all pairs of the form (κ, κ) with κ infinite.

Łoś’s conjecture partitions the infinite cardinals into two classes, {ω}
and the uncountable cardinals; categoricity in one of these classes is inde-
pendent of categoricity in the other. The four examples above partition the
pairs of infinite cardinals into three classes: {ω, ω}, {(κ, κ) : ω < κ} and
{(κ, λ) : ω 6 κ < λ}. As the examples illustrate, it will turn out that cate-
goricity in one of these classes is not always independent of categoricity in
another. In fact (κ, κ)-categoricity for some uncountable κ implies (ω, ω)-
categoricity (cf. Theorem 14.1) but is incompatible with (κ′, λ′)-categoricity
when κ′ < λ′ (cf. Theorem 9.3).
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4 Direct sums

In the class of group pairs, we can form direct sums A =
⊕P

i∈I Ai. The
definition is the same as for abelian groups, except that we also require that
for any element a =

∑

i∈I ai with ai in Ai,

a ∈ AP ⇔ for all i ∈ I, ai ∈ AP
i .

For example if the Ai are sub-group-pairs of the group pair A, we can ask
whether A is the group pair direct sum of the Ai. It suffices to check that A
is an abelian group direct sum of its subgroupsAi, and that the equivalence
above holds from left to right. (Right to left holds automatically since P
picks out a subgroup.) It will be useful to have criteria which guarantee
that the equivalence does hold from left to right.

Lemma 4.1 Let A be an abelian group, and let Ai (i ∈ I) be sub-group-pairs of
A such that A =

⊕

i∈I Ai as abelian groups. Suppose also that there are a subset
J of I and an element j0 of J such that AP ⊆

⊕

i∈J Ai, and Aj ⊆ AP for all

j ∈ J \ {j0}. Then A =
⊕P

i∈I Ai.

Proof. Suppose a =
∑

i∈I ai, a ∈ AP . Then a = (
∑

j0 6=i∈J ai) + aj0 . By

assumption each ai (j0 6= i ∈ J) is in AP . So aj0 is in AP too. Also when
i /∈ J , ai = 0 ∈ AP . �

A direct sum A ⊕P B is in fact a direct product A × B, so that the
Feferman-Vaught theorem applies (e.g. [5] section 9.6). Thus:

Lemma 4.2 (a) If B1 ≡ C1 and B2 ≡ C2 then B1 ⊕
P B2 ≡ C1 ⊕

P C2.

(b) If B1 4 C1 and B2 4 C2 then B1 ⊕
P B2 4 C1 ⊕

P C2.

(c) If X is a set of elements of B and a, b are elements of B, then a, b realise
distinct types over X in B ⊕P C if and only if they realise distinct types
over X in B.

(d) Suppose B and C both have the property that over every countable set of
parameters there are at most countably many (1-)types realised. Then the
same holds for B ⊕P C .

(e) Suppose φ(x̄) is a formula of L(P ) and T is a complete theory in L(P ).
Then there is a formula θ(x̄) such that if A,B are L(P )-structures and B is
a model of T , then for every ā in A,

A⊕P B |= φ[ā] ⇔ A |= θ[ā].
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Proof. (a), (b) and left to right in (c) are straightforward from the Fefer-
man-Vaught theorem. For right to left in (c), suppose a and b satisfy dif-
ferent types over X in B. By quantifier elimination (Theorem 3.2) there is
some p.p. formula φ(x) which is satisfied inB by a and not by b (say). Since
φ is existential, a satisfies it also inB⊕PC . But b doesn’t satisfy it inB⊕P C ,
since there is a projection from B ⊕P C to B that fixes B pointwise.

For (d), here is a more direct argument which works in our case. Sup-
pose to the contrary that X is a countable set of elements of B ⊕P C over
which the elements bi + ci (i < ω1) realise distinct types. Without loss we
can assume that X = Y +Z where Y,Z are respectively subgroups of B,C .
By assumption at most countably many types are realised by the bi over Y ;
so we can assume that all the bi realise the same type over Y . Since b0 + c0
and b1 + c1 realise different types over Y + Z , quantifier elimination gives
us a p.p. formula ψ and elements d̄, ē of Y,Z respectively, such that

B ⊕P C |= ψ(b0 + c0, d̄, ē) ∧ ¬ψ(b1 + c1, d̄, ē)

(or vice versa). Since ψ is p.p., we infer

B |= ψ(b0, d̄, 0̄)

and hence

B |= ψ(b1, d̄, 0̄).

These two conditions hold also with B ⊕P C in place of B, since ψ is exis-
tential. So by subtraction

B ⊕P C |= ψ(c0, 0̄, ē) ∧ ¬ψ(c1, 0̄, ē),

whence

C |= ψ(c0, 0̄, ē) ∧ ¬ψ(c1, 0̄, ē).

This argument shows that the ci realise uncountably many different types
over Z in C , contradicting the assumption on C .

To prove (e), assume φ(x̄) is given, and use the Feferman-Vaught theo-
rem as at [5] Theorem 9.6.1 to find θ0(x̄), . . . , θk−1(x̄) in L(P ) such that for
any A,B and any ā inA, the truth of φ(ā) inA⊕P B is determined by which
of the θi(ā) are true inA and which of the θi(0̄) are true inB. IfB is a model
of T then it is determined which θi(0̄) are true in B, and so the truth of φ(ā)
in A ⊕P B is determined by whether θ(ā) is true in A, for some boolean
combination θ of the θi. �
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5 Pushouts

Some of our results will need a construction which is one step more com-
plicated than direct sums, namely pushouts or fibred sums.

Let B be a group and let Ai (i ∈ I) be groups which have B as a sub-
group. The pushout of the Ai over B is a group C together with homomor-
phisms ιi : Ai → C (i ∈ I) which agree on B, such that:

If D is any group and γi : Ai → D are homomorphisms which
agree on B, then there is a unique homomorphism α : C → D
such that γi = α.ιi for each i ∈ I .

By general nonsense the pushout always exists (we will construct it in a
moment), and it is unique up to isomorphism over the group B.

Lemma 5.1 Suppose the groups Ai (i ∈ I) all have B as a subgroup. Then their
pushout over B is the group

C =

(

⊕

i∈I

Ai

)

/E

where, if b is an element of B and we write bi for the copy of b in the i-th direct
factor, thenE is the group generated by all the elements bi−bj as i, j range through
I and b ranges through B. The map ιi : Ai → C is the embedding of Ai in the
direct sum, followed by the natural map to C ; it is an embedding.

Proof. The group C is generated by the images of the maps ιi, so that
uniqueness of α in the definition of pushout is guaranteed. For its exis-
tence, if ι′i is the embedding of Ai in the direct sum, then there is a unique
homomorphism α′ from the direct sum to D, such that γi = α′.ιi for each
i. Since the γi agree on B, α′ is zero on E, and hence it factors through the
natural map as required. To confirm that ιi is an embedding, it suffices to
note that E is disjoint from the factor Ai in the direct sum. �

Since the maps ιi are embeddings which agree on B, we can identify
the Ai with subgroups of C . Hence it makes sense to describe ‘internal’
pushouts where the ιi are inclusion maps, just as one has internal direct
sums.

Lemma 5.2 Let A be a group and B a subgroup.

13



(a) The group A is the (internal) pushout of subgroups Ai (i ∈ I) if and only if
the Ai generate A, and for any distinct i0, . . . , in ∈ I , Ai0 ∩ (Ai1 + . . . +
Ain) = B.

(b) If A is the pushout over B of its subgroups Ai (i ∈ I), then A/B =
⊕

i∈I(Ai/B).

(c) Conversely if A/B factors as a direct sum A/B =
⊕

i∈I Ci, then if we put

Ai = {a ∈ A : a+B ∈ Ci},

A is the pushout over B of the Ai.

Proof. (a) is clear from the construction, and then (b) follows immedi-
ately. For (c), take an arbitrary element a of A. By the direct sum decompo-
sition

a+B = c1 + . . . + cn

for some distinct i1, . . . , in ∈ I and some ci ∈ Ci. For each ci, choose ai ∈ ci.
Then there is b ∈ B such that

a = a1 + . . . + (an + b).

The i-th term on the right is in Ai; so the Ai generate A. Suppose that this
element a is also in Ai0 where i0 is distinct from i1, . . . , in. Then a+ B lies
in Ci0 . But A/B is the direct sum of the Ci, so that a ∈ B as claimed. �

Let A be a group and B a subgroup of A; we write t(A/B) for the tor-
sion subgroup of A/B. We say that an element a of A is torsion over B if
a+B is torsion in A/B. The set of all elements of A which are torsion over
B is a subgroup tB(A) of A. Let t(A/B) =

⊕

pCp be the primary decom-
position of t(A/B), and for each prime p let tpB(A) be the group of elements
a of A such that a + B is in Cp. Then tB(A) is the pushout over B of the
groups tpB(A). We call tB(A), tpB(A) respectively the torsion-over-B and the
p-torsion-over-B components of A.

The next lemma describes p-heights in pushouts.

Lemma 5.3 LetA be a group with a subgroup B such that A/B is torsion, so that
A as a pushout of its subgroups Ap = tpB(A).

(a) For each prime p and each element a of Ap, htpA(a) = htpAp
(a).

14



(b) Let a = a0 + . . . an be an element of A where for each i 6 n, ai ∈ Ap(i) and
the p(i) are distinct primes. Put p = p(0), and for each i (1 6 i 6 n) let
m(i) be the least non-negative integer such that p(i)m(i)ai ∈ B. Suppose
htA(a) = k < ω. Then there are integers v1, . . . , vn depending only on
p, p(1), . . . , p(n),m(1), . . . ,m(n), such that

htpA(a) = htpAp
(a0 + v1p(1)

m(1)a1 + . . .+ vnp(n)m(n)an).

Proof. (a) Trivially htpA(a) > htpAp
(a). Conversely suppose pkb = a with

b ∈ A. Since a ∈ Ap, we know that a + B is in the p-component of A/B.
Then b+B is also in the p-component, so b ∈ Ap.

(b) Given (a), it suffices to find the vi so that for each i (1 6 i 6 n), pk+1

divides (vip(i)
m(i) − 1)ai. Fixing i, put q = p(i) and m = m(i). Then by

Euclid there are integers u, v such that upk+1 + vqm = 1. Then

upk+1ai + vqmai = ai.

Put v(i) = v. �

Part II

Obstructions to categoricity

Following Shelah’s recipe [12], we start with the available ways of con-
structing many models of a theory T over the same P -partB. In Lemma 6.1
and related results henceforth, Q is made a group pair by putting QP = 0.

6 Copies of Q outside P

Lemma 6.1 Suppose A is a group pair with A/AP unbounded. Then for any
cardinal κ > 0, A 4 A⊕P Q(κ).

Proof. For each element a of A, introduce a new constant ca; for each
rational q introduce a new constant cq . Let T be the following theory:

The elementary diagram of A (i.e. the set of all first-order sen-
tences true in A using the new constants ca);
the diagram of Q (i.e. the set of all atomic or negated atomic
sentences true in Q, written with the new constants cq);
the sentence ca 6= cq whenever a 6= 0 6= q;
for all q 6= 0, the sentence ¬P (cq).

15



Since A/AP is unbounded, every finite subset of T is satisfiable in A, and
so by compactness T has a model B+. Write B for the reduct of B+ to the
language of A. Then B is up to isomorphism an elementary extension of
A, and B contains a copy Q of Q which is disjoint from BP . Let C be a
subgroup of B which contains BP and is maximal disjoint from Q. Then
B = C ⊕ Q since Q is divisible (cf. [3] Theorem 21.2). Since BP ⊆ C , the
sum C ⊕ Q is a group pair direct sum (by Lemma 4.1)

By the Szmielew invariants ([5] section A2) or more simply the upward
Löwenheim-Skolem theorem, Q 4 Q ⊕ Q(κ) as abelian groups, and so by
Feferman-Vaught for group pairs (Lemma 4.2),

A 4 B = C ⊕P Q 4 C ⊕P Q ⊕P Q(κ) = B ⊕P Q(κ).

But also, by Feferman-Vaught again,

A ⊆ A⊕P Q(κ) 4 B ⊕P Q(κ).

So A 4 A⊕P Q(κ). �

Lemma 6.2 Suppose A, B are group pairs with A ⊆ B and AP = BP . Suppose
B/A = F for some torsion-free group F . Then B ≡ A⊕P F as group pairs.

Proof. By expressing A, B and F as parts of a single structure, we can
form an ω1-saturated elementary extension

A′ −→ B′ −→ F ′

of the short exact sequence of group pairs

A −→ B −→ F.

Since F is torsion-free, so is F ′, and hence both sequences are pure exact
for abelian groups. The abelian group A′ is ω1-saturated and hence pure-
injective, so that the first short exact sequence splits as a sequence of abelian
groups. Since (B′)P ⊆ A′, we have the group pair direct sumB′ = A′⊕P F ′.
Then

B ≡ B′ = A′ ⊕P F ′ ≡ A⊕P F,

using Feferman-Vaught (Lemma 4.2(b)). �

The main device of the proof of this lemma, namely putting various
groups together in a structure and taking an ω1-saturated elementary ex-
tension, will occur again. We call it blowing up.
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Theorem 6.3 Let A be a group pair with A/AP unbounded. Then:

(a) Th(A) is not (κ, κ)-categorical for any infinite κ.

(b) Th(A) is not (κ, ω)-categorical for any finite κ.

Proof. (a) We can assume A is a (κ, κ)-structure. Let A′ be A ⊕P Q(ω),
which is also a (κ, κ)-model of Th(A) by Lemma 6.1. Let D be a subgroup
of A′ which contains Q(ω), is divisible torsion-free and disjoint from (A′)P ,
and is maximal with these properties. Then (using [3] Theorem 21.2 and
Lemma 4.1 again) we can write A′ as a group pair direct sum B ⊕P D with
AP = BP . Note that B contains no copy of Q disjoint from BP .

Let µ be any cardinal between 1 and κ inclusive, and put Cµ = B ⊕P

Q(µ). Then by Lemma 4.2(a), Cµ ≡ A′, so that Cµ is a (κ, κ) model of Th(A)
with P -part AP . We will show that if 1 6 µ < ν 6 κ then Cµ is not
isomorphic to Cν .

For contradiction suppose there is an isomorphism i : Cν → Cµ. Let
j be the restriction of i to Q(ν); we can write j = j1 + j2 where j1 and j2
are j followed by the projections to B and to Q(µ). We claim that j2 is an
embedding. For suppose not; consider some nonzero a in the kernel of j2.
The group Qj1a is a subgroup of B, while B contains no copy of Q disjoint
from BP . Hence for some positive integer m, mj1a lies in BP . But then
so does mja = mj1a + mj2a, contradicting the assumption that i was an
isomorphism. So the claim holds and j2 embeds Q(ν) into Q(µ). But this is
impossible since µ < ν.

(b) Essentially the same argument works, giving nonisomorphic models
Cµ with 1 6 µ 6 ω. �

Theorem 6.4 Let A be a group pair and p a prime such that Z(p∞)(ω) is a sub-
group of A disjoint from AP . Then Th(A) is not (κ, λ)-categorical for any λ >
κ+ ω.

Proof. Let B be a (κ, λ) group pair elementarily equivalent to A. Then
B ≡ B⊕P Z(p∞)(µ) for any infinite µ (for example using [5] Corollary 9.6.7
and Lemma A.1.6). Since A/AP is unbounded,B ≡ B⊕P Z(p∞)(µ) ⊕P Q(ν)

for any infinite ν. By Löwenheim-Skolem let C be an elementary sub-
structure of B which contains BP and has cardinality κ. By Lemma 4.2(a),
Dµ,ν = C ⊕P Z(p∞)(µ) ⊕P Q(ν) is also elementarily equivalent to B.

Then both Dκ,λ and Dλ,λ are (κ, λ) models of Th(A) with the same P -
part. But the dimensions of the Fp-vector spaces Dκ,λ[p] and Dλ,λ[p] are κ
and λ respectively, so these models are not isomorphic. �
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7 When groups are not divisible-plus-bounded

In this section we assume that λ is uncountable, and we violate (κ, λ)-
categoricity under the assumption that A/AP is unbounded and at least
one of A and AP is not divisible-plus-bounded. By Lemma 2.4, if a group
A is not divisible-plus-bounded then Th(A) is not ω-stable, so we can find
nonisomorphic models by manipulating the number of types realised over
a countable set of elements. We show first that there are models where this
number is ω throughout.

Lemma 7.1 LetA be a group pair withAP infinite. Then for every infinite κ there
is a group pair B which is a (κ, κ) model of Th(A), and is such that the statement
“Over any countable set of elements only countably many types are realised.” is
true for B, BP and B/BP .

Proof. Let B be an Ehrenfeucht-Mostowski model of Th(A) with spine
taken inside the P -part; let the spine be well-ordered of cardinality κ. Then
in B at most countably many types are realised over any countable set X
of elements ([5] Theorem 11.2.9(b)). If X is in BP and a, b are elements of
BP realising distinct types over X in BP , then by relativising formulas, a
and b realise distinct types over X in B too; so the statement holds for BP .
Finally if X is a set of elements of B/BP , choose representatives cx in B so
that x = cx +BP for each x ∈ X. If a+BP and b+BP realise distinct types
overX inB/BP , then this fact can be expressed in the types of a and b over
the cx. So the statement holds for B/BP too. �

In what follows we refer to the models constructed in Lemma 7.1 simply
as Ehrenfeucht-Mostowski models.

Lemma 7.2 Let J be a reduced group elementarily equivalent to Jp for some prime
p, and suppose that in J only countably many types are realised over any countable
set of elements of J . Then J is countable, and there is a pure extension J ′ of J of
cardinality ω1 such that J ′/J is torsion-free divisible, and there are a set X of
uncountably many elements of J ′ and an element c of J such that no two elements
of X satisfy the same p.p. formulas with parameters from 〈c〉.

Proof. Let A be an ω1-saturated elementary extension of J . Then A is
pure-injective and torsion-free, |A/pA| = p and qA = A for all primes q 6= p.
By the structure theory of pure-injective groups, A = Jp ⊕ Q(λ) for some λ.
But J is reduced, so that J 4 Jp and Jp is the pure-injective hull of J . Since
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pJ 6= J , J contains an element c not divisible by p. If a is any element of Jp,
then a is determined by the unique sequence

(a0, a1, a2, . . .)

of integers in the interval [0, p−1] such that for each integern > 0, a satisfies
in Jp the p.p. formula

pn+1|(x− (a0 + pa1 + . . . + pnan)c.

We write this formula as φa,n(x). Then if a and b are distinct elements of J ′,
there is a least n > 0 such that a satisfies φa,n(x) in Jp but b does not. Since
at most countably many types over c are realised in J , J is countable. Also
Jp/J is divisible (by [3] Lemma 41.8(ii)) and torsion-free (as the quotient of
a torsion-free group by a pure subgroup). Since Jp has the cardinality of the
continuum, we can choose J ′ to be a pure subgroup of Jp containing J and
of cardinality ω1. �

The next lemma must surely be well known, but we don’t know a ref-
erence for it.

Lemma 7.3 Let T be a torsion group such that for infinitely many primes p the
p-component Tp of T is not empty, but every Tp is bounded. Let T̂ be the pure-
injective hull of T and A a pure subgroup of T̂ containing T . Suppose that in A
only countably many types are realised over any countable set of elements. Then
there is a pure extension C of A in which uncountably many types over T are
realised, and C/A is torsion-free divisible.

Proof. It suffices to show that we can find A′ realising at least one more
quantifier-free type over T than is realised in A. For then we can iterate
to form A′′ = A(2), A(3) . . ., taking unions at limit ordinals; let C be A(ω1).
The quotients A(i)/A form an increasing pure chain of divisible torsion-
free groups; the quotientC/A is the union of the chain, so that it is divisible
torsion-free. The quantifier-free type of an element of A(i) over T is the
same in C as it is in A(i).

For each nonzero Tp, choose a nonzero cyclic direct summand Cp. List
these cyclic direct summands as (Cpn : n < ω), and for each n choose a
generator cn of Cpn . For each n choose C ′

pn so that Tpn = Cpn ⊕C ′
pn . Then

the pure-injective hull T̂ of T is
∏

n<ω(Cpn ⊕C
′
pn) =

∏

n<ω Cpn ⊕
∏

n<ω C
′
pn

.

Write B =
⊕

n<ω Cpn and D =
⊕

n<ω C
′
pn

, so that T̂ = B̂ ⊕ D̂. If b ∈ B̂, we
write b = (b(n) : n < ω) with each b(n) in Cpn .
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If the order of cn is on, then for each k (0 6 k < on) we write θk,n(x) for
the p.p. formula “on|(x − kcn)”. Then for any element b of

∏

n<ω Cpn , the
formulas θk,n determine the

∏

m6=nCpm-coset of b.

We have B ⊕D ⊆ A ⊆ B̂ ⊕ D̂; so every element of A has the form b+ d
with b ∈ B̂ and d ∈ D̂. By assumption only countably many types over
{cn : n < ω} are realised in A. Choose a countable set X of elements of A
representing each of these types; list the elements of X as xi + di (i < ω)
with xi ∈ B̂ and di ∈ D̂.

We will construct a matrix (bmn : m,n < ω,m > 1) so that the following
conditions are met:

(a) For each m,n < ω with m > 1, bmn is a nonzero element of Cpn .

(b) For each i, j < ω with j > 1 there is n < ω such that jb1n 6= xi(n).

(c) For eachm > 2 there isNm < ω such that for all n > Nm, b1n = mbmn.

For each m > 1 we write b⋆m for the element of T̂ defined by

b⋆m(n) = bmn, b
⋆
m

′(n) = 0 for all n < ω.

The groupA′ will be the subgroup of T̂ generated byA and all the elements
b⋆m with m > 1. The conditions (c) ensure that for every m > 2, mb⋆m − b⋆1 ∈
T ⊆ A, so that b⋆1 + A is a divisible element of A′/A. The conditions (b)
ensure that each element jb⋆1+awith j > 1 and a ∈ A realises (in

∏

n<ω Cpn)
a type over {cn : n < ω} that is not already realised inA, using the formulas
θk,n. It follows in particular that jb⋆1 /∈ A, and hence b⋆1 +A is a torsion-free
element of A′/A. Thus A′/A ∼= Q, and since Q is torsion-free, this implies
that A′ is a pure extension of A.

It remains to find the elements bm,n. We proceed in stages σk (k < ω).
At stage σk we choose a prime number pf(k) so that f is strictly increasing;
then we choose the elements b1,n with f(k−1) < n 6 f(k) so as to deal with
(b) for the cases i, j > k (so far as they haven’t already been dealt with) by
our choice of b1,f(k), and for (c) we find Nk and we choose bmn whenm < k
and Nm 6 n 6 f(k) (where not already chosen). Thus at stage σk we have
finitely many tasks to perform.

We begin stage σk by examining k (when k > 1) and choosing Nk >
f(k− 1) so that no prime dividing k is among the pn with n > Nk. Then we
turn to (b) and assemble the pairs i, j for which (b) is not already ensured.
This is a finite set of pairs. We solve the following problem at the first
n > Nk where it is solvable:
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b1,n is chosen to be a nonzero element of Cpn so that for each of
the relevant pairs i, j, jb1n 6= xi(n).

If n is chosen so that pn is greater than any prime factor of any of the rel-
evant j, then for any choice of nonzero b1,n the elements jb1,n will also be
nonzero elements of Cpn , so it’s clear that by taking n large enough we can
solve the problem. Having found this n, we put f(k) = n. It remains to deal
with the requirements at (c). These are met whenever Nm 6 n 6 f(k) by
choosing m′ such that m′n ≡ 1 modulo the order of Cpn (which is possible
by the choice of Nm) and putting bmn = m′b1n.

Finally we need to check that the types of the added elements b⋆1 over
{cn : n < ω} remain distinct in the final structureC . Since the formulas θk,n

are p.p., it suffices to check that the type of b⋆1 is new in A′. If b1,n = kcn
then on|(b1,n − kcn); it remains to show that on|(b

⋆
1 − (b1,n − kcn)). But this

follows from (c) and the fact that the groups Ci (i < Nm), apart from Cn

itself, are all of orders prime to pn. �

Theorem 7.4 SupposeA is a group pair,A/AP is unbounded andA is not divisible-
plus-bounded. Then Th(A) is not (κ, λ)-categorical when ω 6 κ and ω1 6 λ.

Proof. Consider an ω1-saturated elementary extension A′ of A. By
Corollary 2.3, either (a) A′ has a direct summand of the form Jp for some
prime p, or (b) A′ has no such direct summand, and in this case its reduced
torsion part contains nonzero p-components for infinitely many primes p,
though each reduced p-component is bounded.

In case (a), choose a direct summand of the form Jp, and add rela-
tion symbols to A′ so as to express that this is a direct summand. Then
take a (κ, κ) Ehrenfeucht-Mostowski model of the resulting theory. We can
assume without loss that the original group pair A is the reduct of this
Ehrenfeucht-Mostowski model to the language of group pairs. Now A has
a direct summand which is elementarily equivalent to Jp. Separating the
divisible and reduced parts of this summand, we reach a direct summand
J ofAwhich is reduced and elementarily equivalent to Jp, and hence is em-
beddable as a pure (in fact elementary) subgroup in Jp. By the Ehrenfeucht-
Mostowski construction and Lemma 4.2(c), in J there are only countably
many types realised over any countable set; from the construction of Jp it
follows that J is countable. By Lemma 7.2 there is an extension J ′ of J of
cardinality ω1 such that J ′/J is divisible torsion-free, and J ′ contains an
uncountable subset of elements, no two of which satisfy in J ′ the same p.p.
formulas over J . Form the abelian group B by replacing the direct sum-
mand J by J ′. ThenA ⊆ B as abelian groups, andB/A ∼= J ′/J . By Lemma
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4.2(c) for abelian groups, B realises uncountably many types over some
countable set.

Make B into a group pair by putting BP = AP . Then we are in the
situation of Lemma 6.2, so B ≡ A ⊕P Q(µ) for some cardinal µ > 0. Now
consider the two group pairs A1 = A ⊕P Q(λ) and B1 = B ⊕P Q(λ). These
are both (κ, λ) models (bearing in mind the assumption that λ > ω1). Since
B ≡ A ⊕P Q(µ), we have A ≡ A1 ≡ B1. Also AP

1 = AP = BP = BP
1 . But

in A1 at most countably many types are realised over any countable set of
elements (using Lemma 4.2(d) and the fact that this holds for both A and
the ω-stable group Q(λ)). Since we constructed B1 to realise uncountably
many types over some countable set, A1 6∼= B1 and (κ, λ)-categoricity fails.

In case (b) we proceed similarly but using Lemma 7.3 in place of Lemma
7.2. �

Theorem 7.5 Suppose A is a group pair and Th(A) is (κ, λ)-categorical for some
κ and λ. Then:

(a) A/AP is divisible-plus-bounded.

(b) Either A/AP is bounded, or A is divisible-plus-bounded.

Proof. (a) follows from (b) by Lemma 2.5(a). To prove (b) we take cases.

• When κ 6 λ < ω, all ofA,AP andA/AP are finite and hence bounded.

• When κ < ω = λ, A/AP is bounded by Theorem 6.3(b).

• When κ < ω < λ, Th(A) is uncountably categorical; hence A is ω-
stable, and so divisible-plus-bounded by Theorem 2.1(a). Also in this
case AP is finite.

• When ω 6 κ = λ, A/AP is bounded by Theorem 6.3(a).

• When ω 6 κ < λ, if A/AP is not bounded then A is divisible-plus-
bounded by Theorem 7.4.

�

Example 7.6 In the context of this theorem, if A/AP is bounded then ei-
ther both of A,AP are divisible-plus-bounded or neither are, by Lemma
2.5(b,c). Clearly both can be, for example when A is finite (as in Part IV
of this paper). For a not-quite-trivial example where A/AP is bounded but
neither A nor AP is divisible-plus-bounded, take A = Z with AP = 2Z.
One can show that for this example, Th(A) is (κ, λ)-categorical precisely
when ω 6 κ = λ).
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Example 7.7 Let p be prime, and consider the groupA = Q whereAP is the
set of rational numbers of the form m/n with n nonzero and not divisible
by p. Then A/AP is unbounded and A is divisible. But AP is not divisible-
plus-bounded, since it is an elementary substructure of Jp. Nevertheless
Th(A) is (κ, λ)-categorical whenever ω 6 κ < λ. One can read this off from
the fact that all models of Th(A) take the form B = C ⊕ Q(µ) ⊕ Q(ν) where
µ, ν are any cardinals, C is the injective hull of an elementary substructure
J of Jp and BP = J ⊕ Q(µ).

8 The part outside P ; tight extensions

Theorem 7.5 allows us to draw out some information on the part of A that
lies outside AP .

Definition 8.1 (a) Let A be an abelian group and B a subgroup. We say
that A is a tight extension of B if there is no nontrivial subgroup D of
A disjoint from B such that (D +B)/B is pure in A/B.

(b) Let A be a group pair. We say that A is tight over P if A as abelian
group is a tight extension of AP .

Theorem 8.2 Let A be a group pair such that A/AP is divisible-plus-bounded.
Then:

(a) A is a direct sum A = C ⊕P D where C is a tight extension of AP .

(b) If moreover either A is divisible-plus-bounded or A/AP is bounded, then in
every such decomposition, |C| 6 |AP | + ω.

Proof. (a) By Zorn’s Lemma there is a subgroup D of A which is max-
imal with the properties (1) D is disjoint from AP , (2) (D + AP )/AP is a
pure subgroup of A/AP . As a pure subgroup of a divisible-plus-bounded
group, (D + AP )/AP is a direct summand of A/AP . Write A/AP = C ′ ⊕D
where C ′ is a subgroup of A/AP . Let C be the pre-image of C ′ in A. Then
A = C ⊕D with AP ⊆ C , so that A = C ⊕P D by Lemma 4.1. If C is not a
tight extension of AP , then C ′ contains a direct summand disjoint from AP ,
contradicting the maximality of D.

(b) Take first the case whereA is divisible-plus-bounded. WriteC (which
is divisible-plus-bounded by Lemma 2.5(b)) as a direct sum of finite cyclic
groups and groups of the forms Z(p∞) and Q. Since C is a tight extension
of AP , each of these direct summands contains a nonzero element of AP .
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Next take the case whereA/AP is bounded. HereC/AP is also bounded,
and hence is a direct sum

⊕

i∈I Ci of finite cyclic groups. For each i ∈ I
choose ci ∈ C so that ci+A

P generatesCi. Write ri for the order ofCi. Then
for each i, rici ∈ AP \ {0}; for otherwise rici = 0, and then ci generates a
subgroup of C that contradicts tightness. We claim that if i, j are distinct
members of I then the pairs 〈ri, rici〉, 〈rj , rjcj〉 are distinct. For otherwise
we can replace Cj in the direct sum decomposition by the cyclic group of
order ri generated by cj − ci +AP , and then we get

ri(cj − ci) = 0

contradicting tightness. This proves the claim. It follows that |I| 6 ω×|AP |,
so that

|C| 6 |AP | × |C/AP | 6 |AP | × (ω × |AP |) = |AP | + ω

as required. �

Example 8.3 In general neither of the direct summands C andD is unique,
even given the other. For example letA be Z(p2)⊕Z(p), where the two cyclic
summands are generated by c, d respectively, and let AP be the subgroup
generated by pc. Let C be the subgroup of A generated by c + d, with
CP = AP . LetD be the subgroup ofA generated by pc+d. ThenA can also
be written as a group pair direct sum with C in place of Z(p2), or with D in
place of Z(p), or both. Here Th(A) is clearly relatively categorical.

The decomposition in Theorem 8.2(a) is fundamental for the rest of this
paper. The following assumption (⋆) holds for the rest of this section:

(⋆) A is a (κ, λ) group pair, A = C ⊕P D, AP ⊆ C and C is tight over A.

We show that various relative categoricity conditions onA imply properties
of D.

Theorem 8.4 Assume (⋆). Suppose Th(A) is (κ, λ)-categorical and A/AP is un-
bounded. Then D is unbounded.

Proof. By Theorem 6.3 we know that we must have κ+ω < λ. For con-
tradiction assume that D is bounded. It follows that C/AP is unbounded,
so that by Lemma 6.1 and Lemma 4.2(a),

A ≡ (C ⊕P Q(λ)) ⊕P D.
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Since C ⊕P Q(λ) ⊕P D is also a (κ, λ)-model of Th(A), any automorphism
of AP extends to an isomorphism i : (C ⊕P Q(λ)) ⊕P D → A. Let πC ,
πD be the projections from A to C,D respectively. Then πDi(Q

(λ)) = 0
since D is bounded, and hence πCi embeds Q(λ) into C . But then |C| = λ,
contradicting Theorems 7.5(b) and 8.2(b). �

Theorem 8.5 Assume (⋆). Suppose Th(A) is (κ, λ)-categorical and κ + ω < λ.
Then Th(D) is ω1-categorical.

Proof. By Theorems 7.5(b) and 8.2(b), |C| 6 κ + ω < λ so that |D| =
λ. If D′ ≡ D with |D′| = λ, then A is elementarily equivalent to C ⊕P

D′ by Lemma 4.2(a) and has the same P -part, so (κ, λ)-categoricity would
make A and C ⊕P D′ isomorphic. Now by Theorem 7.5 and categoricity,
A/AP is divisible-plus-bounded, hence so is D by Lemma 2.5(b). If m is
the exponent of the bounded part of A/AP , then D is a direct sum of finite
cyclic groups of order 6 m and groups of the forms Z(p∞) or Q. There
are only countably many isomorphism types of such summands, and since
λ > κ+ω, at least one of these types must appear at least (κ+ω)+ times in
D.

Now the number of direct summands of the form Z(p∞) inA is the rank
ρ(A) of pmA[p] as a vector space over Fp; this invariant ρ is additive in di-
rect sums of abelian groups. Since C has cardinality 6 κ+ω, ρ(C) 6 κ+ω,
and hence ρ(A) = ρ(D) whenever ρ(D) > κ + ω. A similar additive in-
variant detects from A the number of direct summands in D of the form
Z(pk) if this number is greater than κ+ω. (These invariants are straightfor-
ward adaptations of Szmielew invariants—cf. [5] p. 666ff—though unlike
the Szmielew invariants they are not determined by Th(A).)

We claim that at most one isomorphism type of summand appears in-
finitely often in D. For contradiction, suppose there are at least two such
types, say Γ and ∆; at least one of them, say Γ, is not the type of Q. By
compactness and Lemma 4.2(a) the number of summands of type Γ can be
shrunk to κ+ ω or expanded to λ without altering Th(D); and likewise for
∆. So we can construct D′ ≡ D′′ ≡ D, all of cardinality λ, so that Γ ap-
pears only countably many times in D′ and (κ + ω)+ times in D′′. Then
A′ = C ⊕P D′ and A′′ = C ⊕P D′′ are (κ, λ)-models of Th(A) with the
same P -part, and so by (κ, λ)-categoricity they are isomorphic. But this is
impossible since A′ and A′′ differ in the invariant that detects Γ. The claim
is proved.

If D is unbounded, the unique type in the claim must be that of Q, and
so Th(D) is ω1-categorical by Theorem 2.1(b)(ii). If D is bounded, the one
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type can be that of any Z(pk), but the remaining summands form a finite
group; again Th(D) is ω1-categorical, this time by Theorem 2.1(b)(i). �

The next result on D requires a closer analysis of tightness. We will
continue this analysis in section 11 below.

Definition 8.6 Let A be a group and B a subgroup. Let p be a prime and
n < ω. Then the Ulm-Kaplansky invariant, in symbols UKp,n(A,B), is the
rank of

pnA[p]

(pn+1A+B) ∩ pnA[p]

(

∼=
pnA[p] + pn+1A+B

pn+1A+B

)

as vector space over Fp. (Cf. [4] p. 61. Note that unlike the Szmielew invari-
ants, this invariant is not necessarily first-order expressible.) If A is a group
pair, we write UKp,n(A) for UKp,n(A,AP ).

Lemma 8.7 For each prime p the Ulm-Kaplansky invariants UKp,n are additive
in group pair direct sums, and zero in divisible groups and q-groups with q 6= p.

�

Lemma 8.8 Let A be an abelian group and B a subgroup of A such that A is a
tight extension of B. Then:

(a) For every prime p and every k < ω, pkA[p] ⊆ pk+1A+B.

(b) (Villemaire [14]) For every prime p and every n < ω, the Ulm-Kaplansky
invariant UKp,n(A,B) is zero.

Conversely if A is a bounded abelian group and B a subgroup of A such that (a)
holds, then A is a tight extension of B.

Proof. (a) For contradiction, let p be a prime, k < ω and pka an element
of pkA[p] which is not in pk+1A+B.

We claim first that a generates a subgroup 〈a〉 of A disjoint from B. For
suppose ipja ∈ B where i is prime to p. By Euclid find integers x, y so that
xi+ ypk+1 = 1. Then

pja = xipja+ ypj+k+1a = xipja ∈ B.

But pka is not in B, so j > k + 1 and hence ipja = 0. This proves the claim.
Second, we claim that a+B generates a nontrivial pure subgroup 〈a+B〉

of A/B. Each element pja + B with j 6 k has p-height j in A/B since
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pka /∈ pk+1 +B. In particular a+B has p-height 0 in A/B, so that 〈a+B〉 is
a nontrivial group. If q is any prime 6= p and h is any positive integer, then
Euclid gives integers u, v such that uqh + vpk+1 = 1, so

a = uqha+ vpk+1a = uqha,

and hence a has infinite q-height in A/B. This proves the claim.
The two claims together contradict the assumption that A is a tight ex-

tension of B.
Then (b) is immediate from (a) by the definition of the invariants.

For the converse, suppose A is not a tight extension of B. By Theo-
rem 8.2(a) we can write A = C ⊕P D where C is a tight extension of B.
Since A is not a tight extension of B, D is a nontrivial direct sum of finite
cyclic groups. HenceD has a direct summand of the form Z(pk+1) for some
prime p and k > 0. Let d generate D. Then pkd ∈ pkA[p] \ (pk+1A + B),
contradicting (a). �

Theorem 8.9 Assume (⋆) with κ = λ. Suppose Th(A) is (κ, κ)-categorical and
ω < κ. Then D is finite.

Proof. Assume Th(A) is (κ, κ)-categorical with κ > ω. By Theorem
6.3(a), A/AP is bounded and so D is bounded. If D is infinite, then D
has a direct summand that is an infinite homocyclic subgroup Z(pk)(µ). By
compactness,

Z(pk)(µ) ≡ Z(pk)(ω) ≡ Z(pk)(κ),

so by Lemma 4.2(a) there are D′ and D′′ elementarily equivalent to D,
where D′ has a direct summand Z(pk)(κ) but D′′ has no direct summand
Z(pk)(µ) with µ > ω. Write A′ for C ⊕P D′ and A′′ for C ⊕P D′′. Then A′

and A′′ are (κ, κ)-models of Th(A) with the same P -part, and so by (κ, κ)-
categoricity they are isomorphic.

We calculate the Ulm-Kaplansky invariant UKp,k−1(A
′). By Lemmas

8.7 and 8.8(b),

UKp,k−1(A
′) = UKp,k−1(C) + UKp,k−1(D

′, 0)
= UKp,k−1(D

′, 0)
= pk−1D′[p]/pkD′[p]
= κ.

The corresponding calculation with A′′ gives that UKp,k−1(A
′′) = ω. This

contradicts the fact that A′ is isomorphic to A′′. �
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9 Incompatible relative categoricities

Being (κ, λ)-categorical can sometimes prevent a theory from being (κ′, λ′)-
categorical. The following examples are completely trivial:

Theorem 9.1 Let T be a (κ, λ)-categorical theory of group pairs. Then under
either of the following conditions, T is not also (κ′, λ′)-categorical:

(a) κ is finite and κ′ 6= κ.

(b) λ is finite and λ′ 6= λ.

Proof. If T is (κ, λ)-categorical and (κ′, λ′)-categorical, then it has a
(κ, λ)-model A and a (κ′, λ′)-model B. If κ is finite and distinct from κ′,
this implies A 6≡ B, contradicting the completeness of T . Similarly with λ.
�

There is another incompatibility of this kind, involving only infinite car-
dinals. Like the examples above, it depends on showing that certain infor-
mation is expressed in T and hence carries across from one model of T to
another. But now the argument is not so trivial.

Lemma 9.2 Suppose A is a group pair of the form C ⊕P D where AP ⊆ C and
C is a tight extension of AP . Suppose also that A/AP is divisible-plus-bounded,
and that if A/AP is unbounded then so is D. Under these conditions Th(D) can
be read off from Th(A).

Proof. We refer to the Szmielew invariants (cf. [5] p. 666ff). The theory
of the bounded direct summand of D is determined by the invariants

U(p, k;D) = |pkD[p]/pk+1D[p]| ∈ ω ∪ {∞}

for each prime p and each k < ω. To compute these invariants, we introduce
an Ulm-Kaplansky invariant UK(p, k;A) for group pairs by writing

UK(p, k;A) = pUKp,k(A,AP ) = |pnA[p]/((pn+1A+AP ) ∩ pnA[p])|.

(Cf. Definition 8.6.) Then UK(p, k;−) is a Baur-Monk invariant, so it is
multiplicative in direct sums (cf. [5] Lemma A.1.9). Hence

UK(p, k;A) = UK(p, k;C) · UK(p, k;D) = UK(p, k;D)

since UK(p, k;C) = 1 by Lemma 8.8(b). But U(p, k;D) = UK(p, k;D) since
DP = {0}. So we can recover U(p, k;D) from Th(A).
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Next we consider the divisible p-torsion part Dp of D; the relevant
Szmielew invariants are

D(p, k;D) = |pkD[p]| ∈ ω ∪ {∞}

with k < ω. For determining Th(D) we need only the values of D(p, k;D)
for large enough k. NowD(p, k;D) is not necessarily equal to eitherD(p, k;A)
orD(p, k;A/AP ), since for example there may be divisible p-torsion groups
in A whose socle lies inside AP . It suffices to use instead the Baur-Monk
invariant D⋆(p, k;−) where for any group pair B,

D⋆(p, k;B) = |pkB[p]/(pkB[p] ∩BP )|.

Since DP = {0}, D⋆(p, k,D) = D(p, k;D) for all p and k. By Lemma 8.8(a),
D⋆(p, k;C) = 1 when we take k so that pk is greater than the exponent of
the bounded part of A, so that pkC = p∞C . Hence D(p, k;D) for all large
enough k is equal to D⋆(p, k;A) and hence is determined by Th(A).

The Szmielew invariants Tf(p, k;−) are not needed for determining the
theory Th(D), since D is divisible-plus-bounded. The only other piece
of information that we need is whether D is bounded or not. If A/AP is
bounded then clearly D is bounded; by assumption if A/AP is unbounded
then D is unbounded. �

Theorem 9.3 Suppose T is a (κ, κ)-categorical theory of group pairs, where ω <
κ. Then if κ′ < λ′, T is not also (κ′, λ′)-categorical.

Proof. SupposeT is both (κ, κ)-categorical and (κ′, λ′)-categorical. Then
T has a (κ, κ)-model A and a (κ′, λ′)-model B. By Theorem 6.3(a), A/AP is
bounded, and hence so is B/BP since this is expressible in T . Hence by
Theorem 8.2(a), A is a direct sum A = C ⊕P D where C is a tight extension
of AP , and B is a direct sum B = C ′ ⊕P D′ where C ′ is a tight extension of
BP .

Since κ is infinite, so is κ′. But also κ is uncountable, and so Theorem 8.9
tells us that D is finite. By Lemma 9.2, D′ is finite too. Hence by Theorems
7.5(b) and 8.2(b),

κ′ = |BP | 6 |C ′| 6 |BP | + ω = κ′.

Since D′ is finite, we have

λ′ = |C ′| + |D′| = κ′

contradicting the assumption that κ′ < λ′. �
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Theorem 9.4 Suppose T is a (κ, λ)-categorical theory of group pairs, and A is a
model of T of the form C ⊕P D where C is a tight extension of AP . If A/AP is
unbounded then so is D.

Proof. Let A′ be a (κ, λ) model of T , and by Theorems 7.5 and 8.2(a)

write A′ as C ′⊕P D′ where C ′ is a tight extension of A′P . Since A/AP is un-

bounded, so is A′/A′P . By Theorem 8.4, D′ is unbounded. So the assump-
tions of Lemma 9.2 are satisfied, and we infer that Th(D′) is determined by
T . So Th(D′) = Th(D), and hence D is unbounded too. �

10 Reduction Property

We say that T has the Reduction Property if for every formula φ(x̄) of L(P )
there is a formula φ⋆(x̄) of L such that if A is any model of T and ā a tuple
of elements of AP , then

A |= φ(ā) ⇔ AP |= φ⋆(ā).

The next result is in some sense a model-theoretic version of Lemma 1.1.
The proof adapts Pillay and Shelah [10], who proved it when κ = λ. For
any complete theory T and positive integer n, we write Sn

T for the set of
complete types of T over the empty set in the variables v0, . . . , vn−1.

Theorem 10.1 Let T be a complete theory of group pairs. Suppose T is (κ, λ)-
categorical for some κ and λ. Then T has the Reduction Property.

Proof. We first claim that

For each n < ω there is a function σ : Sn
T P → Sn

T such that for
every model B of T and every n-tuple ā of elements of BP , if ā
realises p ∈ Sn

T P in BP then ā realises σ(p) in B.

Suppose first that κ is infinite. Let B,C be models of T and b̄, c̄ finite se-
quences inBP , CP respectively which realise p inBP , CP . We have to show
that b̄, c̄ realise the same type in B,C respectively. Since B ≡ C , we can el-
ementarily embed both in a single model and thus assume B = C . If κ = λ
then by Löwenheim-Skolem we can assume that B is a (κ, λ)-model. On
the other hand if κ < λ, then we can choose a (κ, κ)-model and (by the
classification above) blow it up to a (κ, λ)-model. By Theorems 7.5(b) and
8.2, B = C ⊕P D where BP ⊆ C and |C| = |BP | = κ. Now put C0 = C . By
assumption (CP

0 , b̄) ≡ (CP
0 , c̄). Let a be any element of CP

0 and let q(b̄, x) be
the type of a over b̄ in CP

0 . Then q(c̄, x) relativised to P is consistent with

30



the elementary diagram ofC0; so there exists an elementary extensionC1 of
C0 with an element d such that (CP

1 , b̄, a) ≡ (CP
1 , c̄, d). We can choose C1 to

be of cardinality κ. Now we repeat this move back and forth, so as to build
up an elementary chain C0 4 C1 4 . . . of length κ. It can be arranged that
the elements of CP

κ are listed as ā and as d̄ so that (CP
κ , b̄, ā) ≡ (CP

κ , c̄, d̄).
Then the map ā 7→ d̄ defines an automorphism of CP

κ which takes b̄ to c̄. By
Lemma 1.1 and (κ, λ)-categoricity, this automorphism extends to the whole
of Cκ⊕

P D, and hence b̄ and c̄ have the same type in Cκ⊕
P D and therefore

also in B. This proves the claim.
If κ is finite then BP is determined up to isomorphism by T , and it

already has the property that for any two tuples which realise the same
type in BP there is an automorphism of BP taking one to the other. So a
much shorter version of the previous argument applies, and again we have
the claim.

We infer the Reduction Property as follows. Consider a formula φ(x̄) of
L(P ). If φ ∈ σ(p) then T implies this; so by compactness there is a formula
θp ∈ p such that φ ∈ σ(q) whenever θp ∈ q. Then modulo T , φ implies the
infinite disjunction

∨

{θp : φ ∈ σ(p)}. By compactness again, φ implies a
finite disjunction, which will serve as φ⋆. �

Theorem 10.2 Let T be a complete theory of group pairs. Suppose there are com-
plete theories T1, T2 such that every model of T has the form A = C ⊕P D where
AP ⊆ C , C |= T1 and D |= T2. If T1 has the Reduction Property then so does T .

Proof. Let φ(x̄) be a formula of L(P ). If θ(x̄) is as in Lemma 4.2(e), and
the Reduction Property finds θ⋆(ā), then for every tuple ā in AP ,

C ⊕P D |= φ(ā) ⇔ C |= θ(ā) ⇔ AP |= θ⋆(ā).

�

Part III

Proving categoricity

In this part we show that the conditions for categoricity described in Part
II are not just necessary; they are also sufficient.

In all cases we have group pairs A, B and a pure embedding i : AP →
BP , and we lift i to a pure embedding j : A → B. When i is an isomor-
phism, j will also be an isomorphism. The statement ‘i preserves finite
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p-heights from A to B’ means that the p-height of each element a of AP

in A is equal to the p-height of i(a) in B, where p-heights are reckoned as
either finite or ∞.

11 More on tight extensions

Lemma 11.1 Suppose A is divisible-plus-bounded and is a tight extension of its
subgroup B. Then A/B is torsion.

Proof. Choosem so thatmA is divisible. Suppose for contradiction that
a ∈ A and a + B has infinite order in A/B. Then a has infinite order in A,
and soma lies in a direct summandD of A of the form Q. Since no nonzero
multiple of ma lies in B, D is disjoint from B. But (D+B)/B is isomorphic
to Q and hence is a pure subgroup of A/B. This contradicts the tightness
of A over B. �

Definition 11.2 When p is a prime and A is an abelian group with a sub-
group C , we say that an element a of A is p-proper over C if htpA(a) >

htpA(a+ c) for every c ∈ C . If A is a p-group, we shorten p-proper to proper.

Lemma 11.3 Suppose p is a prime, A is a p-group, C is a subgroup of A and
a ∈ A. Then a is proper over C if and only if for every element c of C ,

htpA(a+ c) = min{htpA(a), htpA(c)}.

Hence if a is proper over C and c is an element of C with htpA(a) = htpA(c), then
a+ c is also proper over C .

Proof. Straightforward, [4] p. 61. �

Lemma 11.4 Let A be an abelian group and B a subgroup of A such that A is a
tight extension of B, and let p be prime.

(a) If A is divisible-plus-bounded, then p∞A[p] ⊆ B.

(b) If a ∈ A \B, pa ∈ B and a is proper over B, then htpA(pa) = htpA(a) + 1.

Proof. (a) Suppose for contradiction that a is an element of A[p] \ B
which has infinite p-height in A. Let kpm be the exponent of the bounded
part of A, with k prime to p. Inductively choose elements ai (i < ω) of
infinite p-height in A so that pai+1 = ai and pi+1ai = 0, as follows. Put a0 =
a. When ai has been chosen, let c be an element of A such that pm+1c = ai.
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Then pmc has p-height > m in A. By Euclid there are integers u, v such that
uk + vpi+2 = 1. Then

pmc = ukpmc+ vpm+i+2c = kpm(uc) + vpi+1ai = kpm(uc).

So pmc is in the divisible part ofA. Put ai+1 = pmc. When the ai are defined,
let D be the subgroup of A generated by {a0, a1, . . .}. Then D is nontrivial,
divisible and disjoint fromB, so thatA can be split asC⊕PD whereB ⊆ C .
So D is a pure subgroup of A/B = C/B ⊕P D, contradicting tightness.

(b) Let k be the p-height of a in A. When k is infinite the statement is
trivial (recalling that we put ∞ + 1 = ∞). When k is finite, for contradic-
tion let d be an element of A such that a = pkd ∈ A \ B and pk+1d ∈ B,
and suppose pk+1d has p-height > k + 1 in A. Then there is b ∈ A such that
pk+2b = pk+1d. So by Lemma 8.8(a), pk+1b − pkd ∈ pkA[p] ⊆ pk+1A + B,
hence the B-coset of pkd contains an element of p-height > k + 1, contra-
dicting the properness of pkd over B. �

Corollary 11.5 SupposeA is a group pair such thatA/AP is divisible-plus-bounded,
A is a tight extension of AP , B is a group pair and B ≡ A. Assume also that if
A/AP is unbounded then A is divisible-plus-bounded. Then:

(a) If B can be written as C ⊕P D where BP ⊆ C and C is a tight extension of
BP , then D = Q(µ) where µ > 0; if A/AP is bounded then µ = 0.

(b) B can be written as in (a).

In particular if A is a tight extension of AP , A/AP is bounded and A = B ⊕P D
with B a tight extension of AP , then D = 0.

Proof. Since B ≡ A, B/BP ≡ A/AP and hence B/BP is also divisible-
plus-bounded. So by Theorem 8.2(a) we can write B = C ⊕P D where C
is a tight extension of BP and D is disjoint from BP . This takes care of (b),
and it remains to show that D must be as described in (a).

NowD is a pure subgroup ofB/BP , so by Lemma 2.5(b), D is divisible-
plus-bounded. Hence it is a direct sum of summands of the following
forms:

(a) A cyclic p-group for some prime p.

(b) Z(p∞) for some prime p.

(c) Q.
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To prove the Corollary we show that D has no summands of either of the
forms (a) and (b), and that when A/AP is bounded,D has no summands of
the form (c) either.

For (a), suppose that D has a direct summand of the form Z(pk+1), gen-
erated by an element d. Then pkd ∈ pkB[p] \ (pk+1B + BP ). It follows that
pkB[p] 6⊆ pk+1B + BP . But this is a first-order property of B and hence of
A, contradicting Lemma 8.8(a). Hence case (a) is impossible.

For (b), suppose that D has a direct summand D1 of the form Z(p∞).
ThenB/BP is unbounded, and so by assumptionA is divisible-plus-boun-
ded. Let kpm be the exponent of the bounded part of A, where k is prime
to p. This exponent can be read off from the Szmielew invariants of A, so
it is also the exponent of the bounded part of B since A ≡ B. Choose d
of order pm+1 in D1. Then d can be written as kc with c ∈ D1. Thus B
contains an element kpmc ∈ B[p] \BP . Since A ≡ B, A contains an element
kpma ∈ A[p] \ AP . But every element of the form kpma lies in the divisible
part of A and hence has infinite p-height. This contradicts Lemma 11.4(a).
Hence case (b) is impossible.

If A/AP is bounded, then so is B/BP , and it follows that D has no
summands of the form Q. �

Lemma 11.6 Suppose A is an abelian group with a subgroup B.

(a) If p is a prime and A/B is a bounded p-group, then for every a ∈ A \B the
coset a+B contains a p-proper element.

(b) If A is divisible-plus-bounded, then for every prime p, every coset of B in A
contains a p-proper element.

Proof. (a) The number of p-heights in A/B is finite, and if a ∈ A \ B
then htpA(a) 6 htpA/B(a+B) 6= ∞.

(b) For each prime p the set of values htpA(a) (a ∈ A) is finite. �

12 The lifting

The main result of this section has the following form. Given group pairs
A, B and an embedding i : AP → BP , we extend i to a group pair embed-
ding from A into B. This result is needed for showing that under certain
conditions a theory of group pairs is (κ, λ)-categorical.

Our main tool is the Kaplansky-Mackey extension lemma, [4] Lemma
77.1, suitably adapted. In that lemma the groups are reduced p-groups.
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There is no way for us to assume that our groups are p-groups, or that they
are reduced. In the case whereA is divisible-plus-bounded, we can writeA
as a direct sum of its torsion and its torsion-free parts; but we don’t know
that this decomposition carries over to AP , and we still have the divisible
parts to take care of. In the case where A/B is bounded, we don’t even
know that the torsion part of A is a direct summand.

Since we can’t separate out the primary components in A, we will take
second best and separate them in A/AP . The effect is that we decomposeA
as a pushout of extensionsAp ofAP where each Ap/A

P is a p-group. We do
the same forB, and our version of Kaplansky-Mackey gives us embeddings
from Ap to Bp over the given i : AP → BP . The pushout property allows
us to combine these embeddings into a single embedding of A into B.

We still have to generalise Kaplansky-Mackey to a situation where the
ground groups are not p-groups and the Ap/A

P may have divisible com-
ponents. The following example makes it unlikely that we can handle
the bounded part and the divisible part separately; so we need to adjust
Kaplansky-Mackey to handle both simultaneously.

Example 12.1 Let p be a prime. Put A = Z(p∞) ⊕ Z(p2). In A let a be an
element of Z(p∞) of order p and b an element of Z(p2) of order p. Make A
into a group pair by taking for AP the subgroup generated by a + b. Then
A is divisible-plus-bounded, and A is tight over AP . But we can’t split A
into two group pair summands, one divisible and one bounded. Also note
that Z(p∞) + AP is not tight over AP ; the whole divisible part becomes a
separate summand. So fibring over AP won’t help either.

But we can assume thatA and B are tight over AP and BP respectively,
and this gives us the required legroom to adapt Kaplansky-Mackey to our
situation.

Theorem 12.2 Let p be a prime. Suppose A and B are groups and C , D are
subgroups of A, B such that A/C and B/D are p-groups. Assume A is a tight
extension of C and B is a tight extension of D. Let i : C → D be an embedding
which preserves p-heights from A to B. Assume either

(a) A/C and B/D are bounded groups, or

(b) A and B are divisible-plus-bounded groups.

Then there is an embedding j : A → B which extends i and preserves p-heights
from A to B. When i is an isomorphism, j can be taken to be an isomorphism.
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Proof. We define, by induction on α, an increasing chain of embeddings
iα : Aα → Bα (α 6 ξ) such that

• A0 = C , B0 = D and Aξ = A.

• Each iα preserves finite p-heights from A to B.

Since i : C → D is an embedding which preserves finite p-heights from
A to B, we can put i0 = i. At limit ordinals we take unions.

We define iα+1 : Aα+1 → Bα+1, assuming that iα : Aα → Bα has been
defined and Aα 6= A. Since A/Aα is a p-group, there is some element a ∈
A \Aα with pa ∈ Aα. By Lemma 11.6, (a) or (b) according as (a) or (b) holds
above, we can assume that a is proper over Aα. Put k = htpA(a).

Now there are two cases, according as k is finite or infinite.
If k is finite, then since A is tight over Aα, Lemma 11.4(b) tells us that

htpA(pa) = k + 1. Since iα preserves finite p-heights from A to B, iα(pa) has
p-height k + 1 in B. Choose b in B so that pb = iα(pa) and htpB(b) = k.

If k is infinite, then we are in assumption (b). Certainly pa has infinite
p-height in A. Using the facts that iα preserves finite p-heights from A toB,
and that elements of large enough p-height have infinite p-height, we can
choose b in B so that pb = iα(pa) and htpB(b) = ∞ = k.

Either way, we have chosen b in B so that pb = iα(pa) and htpB(b) =
htpA(a).

Claim A. The element b is proper over Bα. This is trivial if k is infinite.
If k is finite and the claim fails, then there is b′ ∈ Bα such that b + b′ has
p-height > k, where necessarily b′ has p-height k and so does a′ = i−1

α (b′).
Since a was proper over Aα, the same holds for a+ a′ by Lemma 11.3, and
hence by tightness and Lemma 8.8(a), p(a + a′) has p-height k + 1. But
p(b+ b′) has p-height> k+1; since iα(p(a+a′)) = p(b+ b′), this contradicts
the induction assumption that iα preserves finite p-heights from A to B.
The claim is proved.

Claim B. For every a′ ∈ Aα and every positive integer m,

htpA(ma+ a′) = htpB(mb+ iαa
′).

Since A/Aα and B/Bα are p-groups and pa, pb are in Aα, Bα, it suffices to
prove the claim whenm = 1. But in this case the claim follows at once from
Lemma 11.3 and the fact that a and b are proper. The claim is proved.

Claim C. For every a′ ∈ Aα and every positive integer m,

ma+ a′ = 0 if and only if mb+ iα(a′) = 0.
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If ma+ a′ = 0 then ma ∈ Aα, so that m = pn for some n. Then a′ = −ma =
−npa and iα(a′) = −niα(pa) = −mb. So the left equation implies the right,
and vice versa by symmetry, proving the claim.

We define Aα+1 to be the subgroup of A generated by Aα and a, and
Bα+1 likewise in B with b. We define iα+1 by

iα+1(ma+ a′) = mb+ iαa
′

for all integers m and all a′ ∈ Aα. By Claim C this defines an embedding
from Aα+1 to Bα+1 which extends iα. By Claim B, iα+1 preserves finite
p-heights from A to B.

We put j = iξ when Aξ = A. By construction j is an embedding which
preserves finite p-heights from A to B.

Suppose i : C → D is an isomorphism. If there is an element b of
B \ j(A) with pb ∈ j(A), then we can continue the construction using j−1 to
extend the domain of j. This is absurd, and hence there is no such element.
Thus j is an isomorphism. �

To combine the extensions given by Theorem 12.2 at the separate primes,
we use pushouts.

Theorem 12.3 Suppose

(a) A and B are group pairs,

(b) AP and BP are both divisible-plus-bounded,

(c) A and B are tight extensions of AP and BP respectively,

(d) i : AP → BP is an embedding which preserves finite q-heights from A to B
for every prime q, and

(e) either both A/AP and B/BP are bounded, or both A and B are divisible-
plus-bounded.

Then there is a pure embedding j : A→ B which extends i. When i is an isomor-
phism, j can be taken to be an isomorphism.

Proof. The groups A/AP and B/BP are both torsion; when A and B
are divisible-plus-bounded, this follows from Lemma 11.1. We can write
A/AP as a direct sum of its p-components for each prime p. By Lemma 5.2
this direct sum makes A the pushout of subgroups Ap (p prime) over AP ,
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where Ap/A
P is a p-group. Likewise the decomposition of B/BP makes

B the pushout of subgroups Bp (p prime) over BP . Each Ap is uniquely
determined as the set of elements a of A such that pka ∈ AP for some
k < ω; and likewise with the Bp’s.

Consider a prime p for which Ap 6= AP . Now by Lemma 5.3(a), p-
heights in Ap are the same as in A, and likewise for Bp. So the assumption
(d) implies that i preserves finite p-heights from Ap to Bp. Hence by Theo-
rem 12.2 there is an embedding jp : Ap → Bp which extends i and preserves
p-heights from AP to BP . The pushout property (section 5) amalgamates
these maps jp into a single embedding j : A → B extending i. When i was
an isomorphism, each of the jp is an isomorphism (again by Theorem 12.2),
and so j is an isomorphism.

We show that even when j is not an isomorphism, it is a pure embed-
ding. It suffices to show that for each p, j preserves p-heights from A to B.
Fix the prime p and an element a of A. Since j is an embedding, htpA(a) 6

htpB(ja). We must show equality when htpA(a) is finite. Now a = a0+. . .+an

where each ai is in some Ap(i) for a distinct prime p(i) and p(0) = p. Also

for each i there is a least m(i) such that p(i)m(i)a(i) ∈ AP . Since j is an em-
bedding, there is a corresponding decomposition ja = b0 + . . . + bn where
for each i, m(i) is the least non-negative integer such that p(i)m(i)bi ∈ BP .
Then Lemma 5.3(b), together with the fact that jp preserves p-heights from
Ap to Bp, shows that htpA(a) = htpB(ja) as required. �

13 The decomposition of the theory

The next theorem applies the results of the previous section to theories of
group pairs.

Theorem 13.1 Let T be a complete theory of group pairs which has the Reduction
Property. Let A and B be models of T , and suppose A = C⊕P D and B = C ′⊕P

D′ where C , C ′ are tight extensions of AP , BP respectively. Suppose also that
either T/TP is bounded or T is divisible-plus-bounded. Then every isomorphism
i : AP → BP extends to an isomorphism from C to C ′.

Proof. Let i be an isomorphism from AP to BP . By the Reduction Prop-
erty, i preserves finite q-heights from A to B, for all primes q. Hence i also
preserves finite q-heights fromC toC ′, sinceC andC ′ are direct summands
of A andB respectively. By Theorem 12.3 it follows that i extends to an iso-
morphism from C to C ′. �
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The following definition makes sense for any first-order language with
× in place of ⊕P , though we will use it only for the case of group pairs.

Definition 13.2 Let T1 and T2 be complete theories in L(P ), and suppose
T2 is disjoint from P . Let T be a complete theory in L(P ). We write

T = T1 ⊕ T2

to mean that if A1 and A2 are models of T1 and T2 respectively, then A1 ⊕
P

A2 is a model of T ; and moreover every model of T is of this form.

Note that by Lemma 4.2(a), if A1 and A2 have complete theories T1 and
T2 respectively, then the theory T = Th(A1 ⊕

P A2) depends only on T1 and
T2. But without further argument we can’t infer that every model of T has
this form.

Theorem 13.3 Let T be a complete theory of group pairs, and suppose T is (κ, λ)-
categorical for some κ and λ. Then there are theories T1 and T2 with the following
properties:

(a) T = T1 ⊕ T2.

(b) If A is any model of T of the form A = C⊕P D where C is a tight extension
of AP , then T1 = Th(C) and T2 = Th(D).

Hence T1 and T2 are determined uniquely by T and the property (b).

Proof. By Theorem 7.5, T/TP is divisible-plus-bounded. Let A be any
model of T . Then by Theorem 8.2(a), A has a decomposition asA = C⊕P D
where C is a tight extension of AP . Put T1 = Th(C) and T2 = Th(D).

We show that every model of T is of the required form. Let B be any
model of T ; then B has a decomposition B = C ′ ⊕P D′. By saturation
arguments we can blow up A and B to isomorphic elementary extensions
Ã and B̃. We can arrange that Ã = C̃ ⊕P D̃ where C̃, D̃ are elementary
extensions of the group pairs C,D respectively; but in general there is no
guarantee that C̃ , D̃ are tight extensions of ÃP , B̃P .

By Corollary 11.5 the blowup C̃ of C has the form C0 ⊕
P Q(µ) where C0

is a tight extension of C̃P , and µ = 0 unlessA/AP is unbounded. IfA/AP is
unbounded, then by Theorem 9.4, D and hence also D̃ will be unbounded,
so Th(C̃) and Th(D̃) are not affected by transferring the Q(µ) to D̃. Assume
this done, so that again C̃ is a tight extension of ÃP . Do likewise with
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B̃. Now by Theorem 13.1 any isomorphism from ÃP to B̃P extends to an
isomorphism from C̃ to C̃ ′. Hence

C ≡ C̃ ≡ C̃ ′ ≡ C ′.

Also

D ≡ D̃ ≡ D̃′ ≡ D′

where the middle equivalence is by Theorem 9.2.
We have shown that if B is any structure elementarily equivalent to

A, then B is the direct sum of a model of Th(C) and a model of Th(D);
this establishes (a). But we also showed that any decomposition of B as in
Theorem 8.2(a) yields the same two theories Th(C) and Th(D), proving (b).
�

14 The possible relative categoricity spectra

We can now characterise all possible relative categoricity spectra for abelian
group pairs, beginning with the spectrum illustrated by Example 3.8.

Theorem 14.1 Let T be a complete theory of group pairs. Then the following are
equivalent:

(a) The relative categoricity spectrum RCspec(T ) is the class of all pairs (κ, κ)
where κ is infinite.

(b) T is (κ, κ)-categorical for some uncountable κ.

(c) T is relatively categorical and has infinite models.

(d) T has the Reduction Property and has infinite models, T/TP is bounded;
and if A is a model of T of the form A = C ⊕P D where C is a tight
extension of AP , then D is finite.

Proof. First we prove (a) ⇒ (b) ⇒ (d) ⇒ (a). The first implication is
immediate.

We prove (b) ⇒ (d). Assume (b). Then by Theorem 10.1, T has the
Reduction Property; and by Theorem 6.3(a), T/TP is bounded. The state-
ment about D follows from Theorem 8.9 and Lemma 9.2. Also T clearly
has infinite models.

We prove (d) ⇒ (a). Assume (d). Let κ be an infinite cardinal. Since T
has infinite models, T has a (κ, κ)-model A. Suppose B is a (κ, κ)-model
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of T and i : AP → BP an isomorphism. By Theorem 8.2(a) we can write
A, B as A = C ⊕P D and B = C ′ ⊕P D′ where C , C ′ are tight extensions
of AP , BP respectively. By Theorem 13.1(a), i extends to an isomorphism
j : C → C ′. By Lemma 9.2, D and D′ have the same complete theory
TD, and the assumption in (d) implies that models of TD are finite; so D
is isomorphic to D′. Combining isomorphisms, we have an isomorphism
from A to B extending i. This shows that RCspec(T ) includes all the pairs
of cardinals described in (a).

We must show that it includes no other pairs. It suffices to show that if
A is any (κ, λ)-model of T then κ = λ. As in the previous paragraph, we
can writeA as C ⊕P D where C is a tight extension of AP . By the finiteness
of D, the boundedness of A/AP and Theorem 8.2(b),

λ = |A| = |C| 6 |AP | + ω = κ

as required.
We prove (d) ⇒ (c). Assume (d), and let A, B be models of T with

AP = BP . As in the previous paragraph, we can write A, B as A = C⊕P D
and B = C ′ ⊕P D′ where C , C ′ are tight extensions of AP , BP respectively.
It follows, as in the proof of (d) ⇒ (a), that the identity on AP extends to an
isomorphism from A to B.

Finally we prove (c) ⇒ (b). Assume (b). Since T has infinite models, it
has an (ω1, ω1)-modelA. SupposeB is another (ω1, ω1)-model of T withAP

isomorphic to BP . Then by relative categoricity, every isomorphism from
AP to BP extends to an isomorphism from A to B. �

Next we take the spectrum illustrated by Example 3.6.

Theorem 14.2 Let T be a complete theory of group pairs. Then the following are
equivalent:

(a) The relative categoricity spectrum RCspec(T ) is the class of all pairs (κ, λ)
where either ω 6 κ < λ or ω = κ = λ.

(b) T is (ω, ω)-categorical and (κ, λ)-categorical for some uncountable κ < λ.

(c) T has the Reduction Property and has infinite models, T/TP is bounded;
and if A is a model of T of the form A = C ⊕P D where C is a tight
extension of AP , then D is ω1-categorical.

Proof. We prove (a) ⇒ (b) ⇒ (c) ⇒ (a). The first implication is immedi-
ate.
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We prove (b) ⇒ (c). Assume (b). Then by Theorem 10.1, T has the Re-
duction Property; and by Theorem 6.3(a), T/TP is bounded. Also T clearly
has infinite models. The statement about D follows from Theorem 8.5 and
Lemma 9.2.

We prove (c) ⇒ (a). Assume (c). Let (κ, λ) be as in the spectrum in (a).
Since T has infinite models, T has a (κ, κ)-model A0. By Theorem 8.2(a) we
can write A0 as A0 = C ⊕P D0 where C is a tight extension of AP . By (c),
D0 is infinite, so it has an elementary extensionD of cardinality λ. Then by
Lemma 4.2(a), A = C ⊕P D is a (κ, λ)-model of T .

Now suppose B is also a (κ, λ)-model of T and i : AP → BP an iso-
morphism. By Theorem 8.2(a) we can write B as B = C ′ ⊕P D′ where
C ′ is a tight extension of BP . By Theorem 13.1(a), i extends to an isomor-
phism j : C → C ′. By Lemma 9.2, D and D′ are elementarily equivalent.
In view of Theorem 8.2(b), D′ must have cardinality λ. If λ is uncountable,
then it follows from (c) that D is isomorphic to D′ since their theory is ω1-
categorical. If λ = ω then it follows from (c) and Theorem 2.1(c) that D
is isomorphic to D′, since T/TP is bounded and hence both D and D′ are
bounded. Either way, combining isomorphisms, we have an isomorphism
from A to B extending i.

We must show that if κ is uncountable then T is not (κ, κ)-categorical.
This is immediate from Theorem 9.3. �

Example 3.7 illustrates the next theorem.

Theorem 14.3 Let T be a complete theory of group pairs. Then the following are
equivalent:

(a) The relative categoricity spectrum RCspec(T ) consists of the pair (ω, ω).

(b) T has the Reduction Property and has infinite models, T/TP is bounded;
and if A is a model of T of the form A = C ⊕P D where C is a tight
extension of AP , then D is bounded but not ω1-categorical.

Proof. We prove (a) ⇒ (b). Assume (a). Then by Theorem 10.1, T has
the Reduction Property; and by Theorem 6.3(a), T/TP is bounded. Also T
clearly has infinite models. By Lemma 9.2 the theory of D depends only on
T . From the implication (c) ⇒ (a) of the previous theorem we know that ifD
was ω1-categorical then the spectrum would contain (ω, ω1), contradicting
our present assumption (a). Since T/TP is bounded, it follows that D is
bounded but not ω1-categorical.

We prove (b) ⇒ (a). Assume (b). Since T has infinite models, T has an
(ω, ω)-model A. SupposeB is also an (ω, ω)-model of T and i : AP → BP is
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an isomorphism. By Theorem 8.2(a) we can writeB asB = C ′⊕P D′ where
C ′ is a tight extension of BP . By Theorem 13.1(a), i extends to an isomor-
phism j : C → C ′. By Lemma 9.2, D and D′ are elementarily equivalent. If
D and D′ are finite, then it follows at once that D is isomorphic to D′. If D
andD′ are infinite, then they are isomorphic by Theorem 2.1(c), since T/TP

is bounded and hence both D and D′ are bounded. Either way, combining
isomorphisms, we have an isomorphism from A to B extending i.

We must show that if λ is uncountable and κ 6 λ then T is not (κ, λ)-
categorical. LetA be a (κ, λ)-model of T , and decomposeA asC⊕PDwhere
C is a tight extension of C . Since D is bounded but not ω1-categorical, it
has two infinite homocyclic components Z(pm)(µ) and Z(qn)(ν) where p, q
are prime and pm 6= qn. By the Szmielew invariants, the complete theory
of A is unaltered if we change µ and ν to any two infinite cardinals. So let
B1 be the result of putting µ = ω and ν = λ, and B2 the result of putting
µ = λ and ν = ω. Since λ is uncountable, the dimensions of pm−1B1[p]
and pm−1B2[p] as Fp-vector spaces are different, and so B1 and B2 are not
isomorphic. But they are (κ, λ)-models of T with the same P -part. �

Finally Example 3.5 illustrates the following theorem.

Theorem 14.4 Let T be a complete theory of group pairs. Then the following are
equivalent:

(a) The relative categoricity spectrum RCspec(T ) is the class of all pairs (κ, λ)
where ω 6 κ < λ.

(b) T is (κ, λ)-categorical for some uncountable κ < λ but not (ω, ω)-categorical.

(c) T has the Reduction Property and has infinite models, T/TP is unbounded,
T is divisible-plus-bounded; and if T has a model A = C ⊕P D where C is
a tight extension of AP then D is unbounded ω1-categorical.

Proof. Proof. We prove (a) ⇒ (b) ⇒ (c) ⇒ (a). The first implication is
immediate.

We prove (b) ⇒ (c). Assume (b). Then by Theorem 10.1, T has the
Reduction Property. Also T clearly has infinite models. By Theorem 7.5,
T/TP is divisible-plus-bounded. It follows from Theorem 8.5 and Lemma
9.2 that D in (c) is ω1-categorical. But then the implication (c) ⇒ (a) of
Theorem 14.2 tells us that T/TP is unbounded, since otherwise T would be
(ω, ω)-categorical. Then by Theorem 9.4, D is unbounded. From Theorem
7.4, T is divisible-plus-bounded.
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We prove (c) ⇒ (a). Assume (c). Suppose ω 6 κ < λ. Then as in
the proof of (c) ⇒ (a) of Theorem 14.2, T has a (κ, λ)-model A of the form
A = C ⊕P D where C is a tight extension of AP and D is unbounded ω1-
categorical.

Now suppose B is also a (κ, λ)-model of T and i : AP → BP an iso-
morphism. By Theorem 8.2(a) we can write B as B = C ′ ⊕P D′ where C ′ is
a tight extension of BP . By Theorem 13.1(a), i extends to an isomorphism
j : C → C ′. By Lemma 9.2, D and D′ are elementarily equivalent. In view
of Theorem 8.2(b), D and D′ must both have cardinality λ, and hence they
are isomorphic. Combining isomorphisms, we have an isomorphism from
A to B extending i.

We must show that T is not (κ, κ)-categorical for any infinite κ. For
uncountable κ this follows from Theorem 9.3. If T was (ω, ω)-categorical
then by Theorem 14.2(b)⇒(c), T/TP would be bounded. �

Theorem 14.5 The possible relative categoricity spectra of group pairs are the four
spectra above, together with the following spectra:

(i) {(m,n)} where m,n are positive finite numbers and m divides n.

(ii) {(m,ω)} where m is finite.

(iii) {(m,κ) : κ infinite}.

(iv) {(m,κ) : κ uncountable}.

Proof. First we show that all cases occur. Examples for the four preced-
ing spectra are given in the preceding discussion. When m,n are positive
finite numbers and mk = n, take A to be Z(n) and AP to be kA. For the
remaining cases we can take m = 1, thus. Putting A = Z(2)(ω) ⊕ Z(3)(ω)

and AP = 0 gives the spectrum {(1, ω)}. Putting A = Z(2)(ω) and AP = 0
gives the spectrum {(m,κ) : κ infinite}. Putting A = Q and AP = 0 gives
the spectrum {(m,κ) : κ uncountable }.

It remains to show that no other spectra occur. Suppose the theory T is
(κ, λ)-categorical. Assume first that κ is infinite. If κ < λ then we are in the
spectrum of Theorem 14.2 if T is (ω, ω)-categorical, and in the spectrum of
Theorem 14.4 otherwise. If κ = λ, then we are in the spectrum of Theorem
14.1 if κ is uncountable, and in the spectrum of Theorem 14.3 if T is not
(µ, µ)-categorical for any uncountable µ.

Next assume κ is finite. If λ is finite, then κ divides λ by Lagrange’s The-
orem, and all models of T are (κ, λ)-models, so we are in case (i). In the re-
maining cases, T determines AP up to isomorphism, so (κ, λ)-categoricity
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implies λ-categoricity. So T is either ω-categorical or ω1-categorical or both,
giving (ii)–(iv). �

Corollary 14.6 Let T be a complete theory of group pairs.

(a) If T is (κ, λ)-categorical for some pair (κ, λ) of infinite cardinals with κ < λ,
then it is (κ, λ)-categorical for all such pairs.

(b) If T is (κ, κ)-categorical for some uncountable cardinal κ, then T is rela-
tively categorical.

�

Corollary 14.6(b) is not true for arbitrary theories of pairs of structures;
see [13]. It’s reasonable to conjecture that Corollary 14.6(a) has counterex-
amples too in the general case.

Corollary 14.7 Let T be a theory of group pairs which is (κ, λ)-categorical for
some κ and λ with λ > ω. Let A1 and A2 be models of T with |A1| 6 |A2| and
|AP

2 | < |A2|, and let f : AP
1 → AP

2 be an elementary embedding. Then f extends
to an elementary embedding of A1 into A2.

Proof. As above, we can write Ai = Ci ⊕
P Di where Ci is a tight exten-

sion of AP
i , for i = 1, 2. By Theorem 12.3, f extends to a pure embedding

h : C1 → C2. But C1 ≡ C2 by Theorem 13.3, and hence h is an elementary
embedding ([5] Corollary A.1.3). Since λ is uncountable and |AP

2 | < |A2|,
we are in the situation of one of Theorems 14.2 and 14.4. In each of these
cases, D1 and D2 are elementarily equivalent ω1-categorical structures and
|A2| = |D2|. Since |D1| 6 |A1| 6 |A2| = |D2|, it follows that there is an
elementary embedding of D1 into D2. Combining these elementary em-
beddings by Lemma 4.2(b) gives the required elementary embedding from
A1 to A2. �

15 Comparison with Shelah [12]

Like us, Shelah considers L(P )-structures A where the 1-ary relation sym-
bol P picks out an L-substructure AP , the P -part of A. He assumes we
consider models of a complete first-order theory T in L(P ). Our L is count-
able, but Shelah doesn’t assume this.

Shelah’s Hypothesis 1.0 is that |A| = |AP |. He doesn’t assume this in
general; he marks with ⋆ those results that do assume it.
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Shelah’s Hypothesis 1.1, alias Hypothesis A, is the Reduction Property.
This property holds for all (κ, κ)-categorical theories for reasons of gen-
eral model theory [10]. Our proof used mostly general theory, but also a
direct sum decomposition. Does the Reduction Property hold for (κ, λ)-
categorical pairs in general?

Shelah’s Hypothesis 1.2, alias Hypothesis B, is the definability of types
over the P -part. More precisely he assumes that for every model A of T ,
every tuple ā in A and every formula φ(x̄, ȳ) of L(P ) there are a formula
ψ(ȳ) of L and a tuple c̄ in AP such that for every tuple b̄ in AP ,

A |= φ(ā, b̄) ⇔ AP |= ψ(b̄, c̄).

In our case Hypothesis B is guaranteed by the stability of T (e.g. [5] Theo-
rem 6.7.8).

Shelah defines: a subset X of a model A of T is complete if whenever
A |= (∃x̄ ⊆ P )φ(x̄, ā) with ā inX, there is c̄ inX∩AP such thatA |= ψ(c̄, ā).
Hypothesis C is that for every modelA of T and every complete setX ⊆ A,
the cardinality of

{tp(b̄/X) : b̄ ∩ MP = ∅,X ∪ {b̄} is complete }

is at most |X||L|. Hypothesis C holds in our case because A/AP is finite or
ω-stable under any relative categoricity assumption.

Shelah defines a notion of a set being ‘stable’. He shows that if all sets
in models of T are stable then Hypothesis C holds, and he proves (using di-
amonds) that in general relative categoricity assumptions imply that every
model of T is stable.

Shelah’s Question D is whether for every pair of models A 4 B, the set
A∪BP is stable. When the answer is Yes, he shows that every suitably satu-
rated modelE of TP is the P -part of a modelA of T which is prime overE.
Presumably in our context the words ‘suitably saturated’ can be dropped;
but to prove this will need some closer correlations between abelian notions
and stability notions than we have room for in this paper.

Shelah is also concerned with the number of models not isomorphic
over a given P -part. Write I(T, κ, λ) for the supremum, over families of
(κ, λ)-models of T with the same P -part, of the number of isomorphism
types of models over the P -part. Then our calculations show that when T
has (κ, λ)-models,

• If κ = λ = ωα with α > 0, and T is not bounded over P , then
I(T, κ, λ) > |ω + α|. (Theorem 6.3(a) with the models Cµ, 1 6 µ 6 λ).
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• If κ < ω = λ and T is not bounded over P , then I(T, κ, λ) > ω.
(Theorem 6.3(b) similarly.)

• If κ = ωα < λ = ωβ and T has models with Z(p∞)(ω) a direct sum-
mand disjoint from P , then I(T, κ, λ) > |β−α|. (Theorem 6.4, consid-
ering the models Dµ,λ with κ 6 µ 6 λ.)

• If T = T1⊕T2 where T1 has models that are tight over P and and T2 is
disjoint from P , then I(T, κ, λ) is at least the number of isomorphism
types of models of T2 of cardinality λ.

Part IV

Finite groups

A finite group pair is relatively categorical if and only if its p-components
are relatively categorical for each prime p. When p 6= 2 we will describe
the relatively categorical finite p-group pairs. The case where p = 2 is more
complicated, and our description in this case will be complete only when
the P -part AP is a characteristic subgroup of A.

16 Preliminaries

If the group pair A is finite, then Th(A) determines A up to isomorphism.
So in particular the relative categoricity of Th(A) is the same thing as the
relative categoricity of A.

Lemma 16.1 Let p be a prime and A a finite p-group pair. Then the following are
equivalent:

(a) A is relatively categorical.

(b) Every automorphism of AP extends to an automorphism of A.

(c) Every automorphism of AP extends to an endomorphism of A.

(d) A has the Reduction Property.

(e) A = C ⊕P D where AP ⊆ C , and C is relatively categorical and a tight
extension of AP .
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Proof. (a) implies (b) by Lemma 1.1 and (d) by Theorem 10.1. By Theo-
rems 7.5 and 8.2, (a) implies thatA has a decompositionA = C⊕P D where
AP ⊆ C , C is a tight extension of AP and C has the Reduction Property.

Since A is finite, (b) and (d) are equivalent; clearly (b) implies (a). This
shows that (a), (b) and (d) are equivalent. The implication (d) ⇒ (a), applied
to C in the previous paragraph, proves that C is relatively categorical and
hence that (a) implies (e). The implication from (e) to (a) is clear.

Clearly (b) implies (c). For the converse, suppose β is an automorphism
of AP which extends to an endomorphism α of A. By Fitting’s Lemma (e.g.
Jacobson [7] p. 113), there is an abelian group direct sum decomposition
A = A1 ⊕ A2 such that α is an automorphism on A1 and nilpotent on A2.
Then AP ⊆ A1. The automorphism which agrees with α on A1 and with
the identity on A2 is an automorphism of A extending β. �

In view of Lemma 16.1 we can use ‘relatively categorical’ henceforth as
meaning the purely group-theoretic statement that every automorphism of
AP extends to an automorphism of A.

Lemma 16.2 Let A be a finite p-group pair where B = AP is cyclic, generated by
an element b 6= 0. Then A is a tight extension of B if and only if A can be written
as A1 ⊕

P . . .⊕P An where

(a) each Ai is cyclic, generated by a nonzero element ai of order pri , and b =
ps1a1 + . . . + psnan where 0 6 si < ri for each i;

(b) si < sj whenever 1 6 i < j 6 n;

(c) 1 6 ri − si < rj − sj whenever 1 6 i < j 6 n.

When A is a tight extension of B, the sequence (s1, . . . , sn; r1, . . . , rn) is uniquely
determined by A.

Proof. Suppose first that A is a tight extension of B. Write A as a direct
sum of nonzero cyclic groups. We can arrange that b is of the form ps1a1 +
. . . + psnan by multiplying each generator ai by a suitable integer prime to
p. Then tightness guarantees that si < ri for each i. Order the summands
so that r1 6 . . . 6 rn.

Suppose i < j and si > sj . Then we can replace aj by aj + psi−sjai; this
reduces Ai ∩ B to 0 and contradicts tightness (by Corollary 11.5). So (b) is
proved.

We turn to (c). Let i < j and for contradiction suppose ri − si > rj − sj .
Then we can replace ai by ai +p

sj−siaj , since by supposition rj −(sj −si) 6
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ri. This reducesAj∩B to 0 and again contradicts tightness. So (c) is proved.
Note that (b) and (c) together imply that rj > ri + 2 whenever i < j.

Conversely supposeA is a direct sum of cyclic groups with (a)–(c) hold-
ing. Write c1, . . . , cn for the generators of the cyclic summands of A. We
show that for every k 6 rn, pkA[p] ⊆ pk+1A+B; by Lemma 8.8 this implies
that A is a tight extension of B.

Suppose there is some element a of pkA[p] \ pk+1A[p]. Then k = ri − 1
for some unique i, and by subtracting suitable elements of pk+1A we can
suppose that a generates the socleAi[p]. Consider the element d = pri−si−1b
of B, (which exists since ri − si − 1 > 0 by (a)). For each j < i, rj − sj − 1 >

ri − si by (c) again, and hence the element d lies in Ai ⊕ . . .⊕ An. Then for
some suitable m prime to p, ma = d + a′ where a′ lies in Ai+1 ⊕ . . . ⊕ An.
Now if i < j then by (b), si < sj . It follows that a′ has p-height at least
ri − si − 1 + si+1 > ri > k + 1, so that a′ ∈ pk+1A as required.

The numbers ri are recoverable from the Szmielew invariants U of the
group A in the usual way. The number s1 is the minimum p-height in A of
elements of AP . Then s2 − s1 is the minimum p-height in ps1A of elements
of ps1A∩AP ; and so on. Hence the sequences of ri’s and si’s are recoverable
from the group pair A. �

Definition 16.3 We refer to the sequence (s1, . . . , sn; r1, . . . , rn) in Lemma
16.2 as the ticket of the group pair A.

Lemma 16.4 Let A be a finite p-group pair.

(a) Suppose A is a group pair direct sum, A1 ⊕
P . . . ⊕P An. If A is relatively

categorical then so is each Ai.

(b) Suppose A = C ⊕P D where AP ⊆ C and C is a tight extension of AP .
Then A is relatively categorical if and only if C is relatively categorical.

Proof. (a) Assume A is relatively categorical and let α be an automor-
phism of AP

i . Extend α to the whole of AP by taking it to be the identity
on each AP

j with j 6= i. By assumption α extends to an automorphism β
of the whole of A. Let γ be β ↾ Ai followed by projection onto Ai along
the remaining direct summands. Then γ is an endomorphism of Ai which
extends α, so Ai is relatively categorical by Lemma 16.1(c).

(b) is then clear. Note that by Theorem 8.2(a), A can always be decom-
posed in this form. �
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17 Automorphisms

Definition 17.1 Fixing a prime p, we consider an abelian p-groupA = A1⊕
. . . ⊕An where each Ai has generator ai of order pri with r1 6 . . . 6 rn. By
an elementary automorphism of A (with respect to the given decomposition)
we mean an automorphism α of A with one of the following two forms:

(a) For some i and some m prime to p, αai = mai, and αak = ak for all
k 6= i.

(b) For some i and j with i 6= j, αai = ai + phmaj where m is prime to p
and rj − h 6 ri; and αak = ak for all k 6= i.

(We use ‘elementary’ here in the sense of linear algebra; of course all auto-
morphisms are elementary embeddings in the model-theoretic sense.)

Lemma 17.2 If A is as in Definition 17.1, then every automorphism of A is a
product of elementary automorphisms. Also every elementary automorphism of
the form (b) is a power of the elementary automorphism where m = 1 and h =
max(0, rj − ri).

Proof. The second sentence is immediate. For the first, use Gaussian
elimination with the obvious adjustments. If α is an automorphism of A,
we write αai =

∑

j mijaj for each i; here each mij is a unique integer mod-

ulo prj . If M is the matrix (mij), we writeM−1 for the matrix of the inverse
automorphism α−1. Since αan has order prn , there is at least one j with aj of
order prn and mnj prime to p. So elementary column operations on the ma-
trix (mij) bring the last row to the form (0, . . . , 0, 1), and then elementary
row operations bring the final column to the form (0, . . . , 0, 1)T . Applying
the same argument to n − 1, n − 2 . . . in place of n, there are matrices P ,
Q of elementary automorphisms such that P (mij)Q is the unit matrix, and
hence (mij) = P−1Q−1. The righthand side of this equation is the matrix of
a product of elementary automorphisms; hence so is the lefthand. �

Definition 17.3 Let A be a group pair with AP = B. We say that A is
separated if A has a group pair direct sum decompositionA = A1 ⊕

P . . .⊕P

Ak such that each AP
i is cyclic.

Lemma 17.4 Suppose the finite p-group pair A is separated as in Definition 17.3,
and each AP

i is generated by an element bi of order psi . Then A is relatively
categorical if and only if :
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for all i 6= j (1 6 i, j 6 k), there is a group homomorphism g : Ai →
Aj taking bi to phbj where h = max(0, sj − si).

Proof. Write B for AP . First we show that if A is relatively categorical
then the condition holds. Let α be the automorphism of B which takes bi
to bi + phbj and fixes each bi′ (i′ 6= i). Then α extends to an automorphism
α+ of A. The automorphism α+ ↾ Ai takes bi to bi + phbj , and so α+ ↾ Ai

followed by projection onto Aj takes bi to phbj as required.
Second, suppose the condition holds. To show that A is relatively cate-

gorical, it suffices to show that each elementary automorphism of B lifts to
A. The one-dimensional automorphisms ((a) in Definition 17.1) lift imme-
diately; multiply A by the same scalar as B. Suppose next that i 6= j and α
is an automorphism ofB which takes bi to bi +phmbj where sj −h 6 si and
m is prime to p. By assumption there is a group homomorphism β from Ai

to Aj which takes bi to pmax(0,sj−si)bj . Suppose phm = m′pmax(0,sj−si). (It
must have this form, since h > sj − si and h > 0.) Then m′β is a homo-
morphism from Ai to Aj taking bi to phmbj . Counting m′β as zero on all
elements outsideAi, the endomorphism 1A +m′β ofA is an automorphism
extending α. �

Now when A is a separated group pair, we can combine the lemmas
above and read off necessary and sufficient conditions forA to be relatively
categorical, in terms of the tickets of the direct summands of A. By Lemma
16.4(b) there is no loss in assuming that A is a tight extension of AP , so that
all the direct summands ofA contain nontrivial cyclic subgroups ofAP and
hence are tight extensions of their P -parts.

Theorem 17.5 Let A be a separated p-group pair and
⊕

i∈I Ai a decomposition
of A as a direct sum of indecomposable group pairs. Assume A is a tight extension
of AP , and for each i ∈ I let τi = (si,1, . . . , si,ni

; ri,1, . . . , ri,ni
) be the ticket of

Ai. Then A is relatively categorical if and only if for all i 6= j in I , and for each k′

(1 6 k′ 6 nj), either rj,k′ − sj,k′ 6 h or there is k (1 6 k 6 ni) such that

(a) si,k 6 sj,k′ + h and

(b) ri,k − si,k > rj,k′ − sj,k′ − h

where h = max(0, (rj,nj
− sj,nj

) − (ri,ni
− si,ni

)).

Proof. For each i let bi be a generator of AP
i as in Lemma 16.2; note

that the order of bi is pri,ni
−si,ni . By Lemma 17.4 it suffices to show that the

condition above is equivalent to: There is an abelian group homomorphism
g : Ai → Aj taking bi to phbj .
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The condition is sufficient. Suppose the condition holds. If k′ is such
that rj,k′ − sj,k′ 6 h, then phbj has zero k′-th component and we can ignore
it. For each k′ where this inequality fails, choose a k as in the condition, and
define a homomorphism αk′ from the subgroup Zai,k to Aj by putting

αk′(ai,k) = psj,k′+h−si,kaj,k′ .

The element of Aj is well-defined by (a). To ensure that αk′ is a homomor-
phism we need to know that the order of αk′(ai,k) is at most pri,k , in other
words that

rj,k′ − sj,k′ − h+ si,k 6 ri,k.

But (b) guarantees precisely this. So the homomorphisms αk′ are well-
defined. Now define β : Ai → Aj to be the sum

∑

1≤k′≤nj
αk′ . One can

check that β(bi) = phbj .
The condition is necessary. Suppose there is a homomorphism α : Ai →

Aj such that α(bi) = phbj , and consider some k′ (1 6 k′ 6 nj). Let β be α
followed by projection onto Zaj,k′. If rj,k′ − sj, k′ 6 h then β(bi) = 0;. If
not then β(bi) has p-height sj,k′ + h. Write β(ai,k) = pℓkmkaj,k′ for each k
(1 6 k 6 ni), where each mk is prime to p. Partition {1, . . . , ni} intoK1∪K2

where k ∈ K2 if and only if si,k + ℓk > sj,k′ + h. Let γ : Ai → Aj be the
homomorphism that acts on each ai,k like β if k ∈ K1 and as zero if k ∈ K2.
Then β(bi) − γ(bi) has p-height > sj,k′ + h; it follows that K1 is not empty
and β(bi) has the same p-height as γ(bi), so β(bi) = mγ(bi) for some integer
m prime to p. Finally let δ : Ai → Aj be mγ. Then si,k + ℓk 6 sj,k′ + h for
each k ∈ K1, and in particular (a) holds for each such k.

Since δ is a homomorphism, the order of some ai,k (k ∈ K1) is at least
that of pℓkmkaj,k′, in other words ri,k > rj,k′ − ℓk. Then

ri,k 6 rj,k′ − ℓk 6 rj,k′ + si,k − (sj,k′ + h)

which immediately gives (b). �

Corollary 17.6 Under the hypotheses of the theorem, suppose that each Ai is
cyclic. Then for each i the numbers ri,k and si,k reduce to single numbers ri and
si, and the conditions (a), (b) reduce to

(a) si 6 sj + h and

(b) ri − si > rj − sj + h

where h = max(0, (rj − sj) − (ri − si)). �
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A small part of the information in Theorem 17.5 extends to the non-
separated case.

Theorem 17.7 Let A be a relatively categorical finite p-group pair, and suppose
that AP = B1 ⊕P B2 where B1 is a cyclic group of order pr, generated by an
element b of p-height s in A. Then every element of B2 of order 6 pr has p-height
> s in A.

Proof. Suppose c is an element of B2 of order 6 pr. Then there is an
automorphism β of B which takes b to b + c. By assumption β extends to
an automorphism α of A. Since b and α(b) = b + c both have p-height s, c
has p-height > s. �

When is a relatively categorical finite p-group pair separated?

Theorem 17.8 Let A be a relatively categorical finite p-group pair.

(a) If p 6= 2 then A is separated.

(b) If p = 2 then A splits as a group pair direct sum of relatively categorical
group pairs A1 ⊕P A2 where A1 is separated and AP

2 is a direct sum of
cyclic groups of pairwise distinct orders.

Proof. Write B = AP as a direct sum of cyclic groups, B1 ⊕ . . . ⊕ Bn

with generators b1, . . . , bn.
(a) We assume p 6= 2. We will show that A is a group pair direct sum

A1 ⊕P A2 with B1 ⊆ A1 and
⊕

j 6=1Bj ⊆ A2, where each of A1 and A2 are
relatively categorical. Induction completes the argument.

We first show that projection onto B1 along the other direct summands
of B is a linear combination of automorphisms of B. Let β be the automor-
phism taking b1 to 2b1 and each other generator bj to bj . Then the required
projection is β−1B . By relative categoricity, β extends to an automorphism
α of A. Then γ = α − 1A is an endomorphism of A extending the pro-
jection. By Fitting’s Lemma the group A has a direct sum decomposition
A = A1 ⊕A2 such that γ is the sum of an automorphism of A1 and a nilpo-
tent endomorphism of A2. Clearly then B1 ⊆ A1 and

⊕

j 6=1Bj ⊆ A2, so
A = A1 ⊕ A2 is a group pair direct sum. Both A1 and A2 are relatively
categorical by Lemma 16.4(a).

(b) Suppose now that p = 2. We show that the construction of (a) allows
us to separate off one cyclic summand Bi provided that there is j 6= i such
that Bi and Bj have the same order. Let α transpose bi and bj , fixing the
other generators ofB pointwise. Let β take bi to bi+bj and fix all generators
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bk (k 6= i) pointwise. Then α(β − 1B) is the projection of B onto Bi along
the other direct summands, and the argument proceeds as before. �

Example 17.9 The following example shows that a relatively categorical
finite 2-group pair need not be separated. Let A be Z(4)⊕ Z(16), and a1, a2

generators of the two summands. Let B = AP be the subgroup generated
by the two elements a1 + 2a2 and 2a1; then B is B1 ⊕P B2 where a1 +
2a2 generates B1 and 2a1 generates B2. If C is a direct summand of A
containing a1 + 2a2, then C contains 8a2 and so must contain an element c
of A with 8c = 8a2. All such elements c have the form m1a1 +m2a2 where
m1,m2 are odd. Hence C contains 2m′a1 + 2a2 for some odd m′, and thus
also (2m′ − 1)a1. It follows quickly that C = A.

We confirm that A is relatively categorical. It suffices to check that each
elementary automorphism of B extends to one of A. The only automor-
phisms of B of the form (a) are scalar multiplication by m, where m is an
odd integer. Each such automorphism extends to the automorphism mul-
tiplying each element of A by m. Next there is the automorphism

a1 + 2a2 7→ 3a1 + 2a2, 2a1 7→ 2a1.

This extends to the automorphism

a1 7→ 3a1, a2 7→ a2.

Finally there is the automorphism

a1 + 2a2 7→ a1 + 2a2, 2a1 7→ 2a1 + 8a2.

This extends to the automorphism

a1 7→ a1 + 4a2, a2 7→ 15a2

of A.

18 Characteristic subgroups

Definition 18.1 Recall that a subgroupB of a group A is characteristic if for
every automorphism α of A, α ↾ B is an automorphism of B. We call a
group pair A characteristic if AP is a characteristic subgroup of the groupA.

Definition 18.2 We fix some conventions for this section. The p-group pair
A is a group direct sum A1 ⊕ . . . ⊕ An where each Ai is a nonzero direct
sum of cyclic groups of order pri , and r1 < . . . < rn. Decomposing each
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Ak into a direct sum of cyclic groups, we can choose a generator for each
of these cyclic groups; the set of these generators for all Ak will be called
the chosen basis. The chosen basis is not fixed; we can re-choose it. We
write B = AP . For each i (1 6 i 6 n) we define two integers si, ti in
the following way. If B ∩ Ai = 0, set si = ri; otherwise si is the least
nonnegative integer such that Ai ∩B contains an element of p-height si. If
B ⊆ A1 ⊕ . . .⊕Ai−1 ⊕ Ai+1 ⊕ . . .⊕ An, set ti = ri; otherwise, ti is the least
nonnegative integer such that there exists an element c1+. . .+ci+. . .+cn of
the group B, with cj in Aj for each j, such that ci is an element of p-height
ti. It is clear that 0 6 ti 6 si 6 ri.

Lemma 18.3 Suppose B is a characteristic subgroup of A. Then:

(a) For each i, B ∩Ai = psiAi.

(b) If j < i, then tj 6 sj 6 ti 6 si.

(c) If i < j, then ri − ti 6 rj − sj .

(d) For each i, si 6 ti + 1; if p 6= 2 or Ai has rank > 1 then ti = si.

Proof. Fix i and j. By the definition of ti, there exists an element c =
c1 + . . . + cn of the group B, with cj ∈ Aj for each j, such that the p-height
of ci is equal to ti. We can arrange the chosen basis so that it contains an
element ai ∈ Ai for which ptiai = ci. Let a′ ∈ Aj , and let h = max(0, rj −ri).
In each of the cases

1. i 6= j, a′ is an element of the chosen basis;

2. i = j, a′ = ai and p 6= 2;

3. i = j, Ai has rank > 1 and a′ is an element of the chosen basis distinct
from ai;

4. i = j, a′ = pai

there is an automorphism α of A which takes ai to ai + pha′ and fixes each
other element of the chosen basis. Since B is a characteristic subgroup of
A, the element b = pti+ha′ = α(c) − c is contained in B ∩Aj .

In the first three cases put b = pti+ha′ ∈ B ∩ Aj . Then either b is an
element of p-height ti + h and then sj 6 ti + h, or else b = pti+ha′ = 0 so
that ti + h > rj > sj . Similarly, in the fourth case b = pti+1ai ∈ B ∩Ai is an
element of p-height ti + 1, and then si 6 ti + 1, or b = pti+1ai = 0, which
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means that ti + 1 > ri > si. To complete the proof of (b), (c), (d) of this
Lemma it suffices to recall that ti 6 si for each i.

To prove (a), arrange the chosen basis so that it contains an element ai

in Ai such that psiai ∈ B. Let a′i be another element of the chosen basis that
lies in Ai. Then there is an automorphism β of A that transposes ai and a′i,
and fixes each other element of the chosen basis. Then β(psiai) = psia′i, and
this element is in B since B is a characteristic subgroup. Since Ai ∩ B is a
group, we infer that psiAi ⊆ B. The converse inclusion B ∩ Ai ⊆ psiAi is
an immediate corollary of the definition of si. �

Corollary 18.4 The order of each element ofB is at most prn−tn . If b = b1 + . . .+
bn, with bj ∈ Aj for each j, is an element of B, and its component bn inAn has the
least possible p-height tn, then the order of b is equal to prn−tn . Hence the cyclic
group generated by b is a direct summand of B.

Proof. Let c = c1 + . . .+ cn be an element of the groupB, with ci belonging
to Ai for each i. By the definition of ti, ci ∈ ptiAi, hence pri−tici = 0. By (c)
of Lemma 18.3, ri − ti 6 rn − sn 6 rn − tn for each i < n and consequently
prn−tnci = 0. Thus prn−tnc = 0 for every element c ∈ B. On the other hand,
prn−tn−1bn ∈ An is an element of p-height rn − tn − 1 + tn = rn − 1, which
implies that prn−tn−1bn 6= 0 and consequently prn−tn−1b 6= 0. �

From the preceding lemmas we can read off a characterisation of the
finite relatively categorical characteristic p-group pairs that are separated
(bearing in mind that when p 6= 2, all finite relatively categorical p-group
pairs are separated).

Theorem 18.5 The following are equivalent, for any finite p-group pair:

(a) A is a relatively categorical characteristic p-group pair which is a group pair
direct sum of cyclic group pairs.

(b) For some s, AP = psA.

(c) In the notation of Definition 18.2, sn = tn.

(d) Either B = 0, or for some s, 0 6= psA ⊆ B and pB ⊆ ps+1A.

If p 6= 2, we can leave out the condition that A is a group pair direct sum of cyclics.

Remark 18.6 The condition (d) is technical; we shall need it below.
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Proof. (a) ⇒ (c): Assume (a) and recall Definition 18.2. Since A is a
group pair direct sum of cyclic group pairs, we can choose the decomposi-
tionA = A1⊕

P . . .⊕P An so that eachAi is a group pair direct sum of cyclic
group pairs. ThenB = (B∩A1)⊕

P . . .⊕P (Bn ∩An), and it follows that the
component bn ∈ An of any element b = b1 + . . .+ bn ∈ B is contained in the
group B ∩ An, which, by Lemma 18.3(a), coincides with psnA. Therefore
tn = sn.

(c) ⇒ (b). Let sn = tn and let an ∈ An be an element of the chosen basis.
Then b = psnan ∈ B, and the p-height of its component psnan in An is equal
to sn = tn. By Corollary 18.4, the cyclic group D generated by b is a direct
summand of B; let B′ be any complementary direct summand, so that B =
D⊕B′. Again by Corollary 18.4, the order of any element b′ ∈ B′ ⊆ B is not
greater than the order of b = psnan. Therefore there is an automorphism β
of the group B which takes b to b+ b′ = psnan + b′. By relative categoricity,
there exists an automorphism α of A such that psnα(an) = α(b) = β(b) =
psnan + b′; therefore, b′ ∈ psnA. Thus B′ is contained in psnA, and, since
psnan also belongs to psnA, we obtain that B ⊆ psnA.

On the other hand, by (b) of Lemma 18.3, si 6 sn for each i 6 n, and
consequently psnAi ⊆ psiAi ⊆ B. Hence, psnA = psnA1 ⊕ . . .⊕ psnAn ⊆ B.

(b) ⇒ (a) and (b) ⇒ (d) are immediate.
(d) ⇒ (c). If B = 0 then tn = sn = rn. Suppose 0 6= psA ⊆ B, pB ⊆

ps+1A. Then s < rn and 0 6= psAn ⊆ B ∩ An = psnAn; it follows that
sn 6 s < rn. If tn 6= sn, then tn = sn − 1. There is an element c1 + . . . + cn
of the group B, with cj in Aj for each j, such that cn has p-height tn. Then
pcn has p-height tn + 1 = sn < rn; on the other hand, pcn ∈ ps+1An, and we
obtain that s + 1 6 sn 6 s. This contradiction proves that the assumption
tn 6= sn was erroneous.

Finally if p 6= 2, then by Lemma 18.3 (d), each Ai is a group pair direct
summand of A with AP

i = psiAi, so a group decomposition of Ai into a
direct sum of cyclics is in fact a group pair decomposition. �

We remark that the finite group pairs satisfying Theorem 18.5(b) are ex-
actly those investigated in Evans, Hodges and Hodkinson [2], which char-
acterised those group pairs A of this form for which A is coordinatisable
over AP .

Let us turn now to the case tn 6= sn; by Lemma 18.3 (d), this is possible
only if p = 2 and An has rank 1. To the end of the section A is a finite
relatively categorical characteristic 2-group pair and B = AP . We denote
by A′ the direct sum A1 ⊕

P . . . ⊕P An−1 and by B′ the intersection B ∩ A′.
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We always assume that tn 6= sn. Since the integers sn−1 and tn play an
essential role in the following argument, we write them s and t for brevity;
by Lemma 18.3(b), s 6 t.

Lemma 18.7 There exists a subset Γ of the set {1, . . . , n − 1}, such that:

(a) if i ∈ Γ, then ti 6= si and consequently Ai has rank 1;

(b) generators ai of the cyclic groups Ai (i ∈ Γ∪{n}) can be chosen so that the
element b = 2tan +

∑

i∈Γ 2tiai belongs to B.

Proof. By the definition of t = tn, there exists an element b′ = b1 + . . .+
bn ∈ B, with bi ∈ Ai for each i, such that bn has 2-height t. Denote by Γ the
set of all indices i < n, such that bi /∈ 2siAi ⊂ B; observe that ti 6= si for
every i ∈ Γ∪{n}. Then the element b = bn +

∑

i∈Γ bi also belongs toB, and
it is clear that for each i ∈ Γ ∪ {n} the element bi has 2-height < si; since
the 2-height of the (nonzero) component in Ai of an element ofB cannot be
smaller than ti, and ti > si−1 by (d) of Lemma 18.3, we find that ti = si−1
and that bi is an element of 2-height ti. If i ∈ Γ∪{n}, then by (d) of Lemma
18.3 the groupAi has rank 1, and we can choose a generator ai of Ai so that
bi = 2tiai; in particular, bn = 2tan. �

Lemma 18.8 The group B decomposes into the direct sum of the group B′ =
B ∩ A′ and the cyclic group D generated by the element b which was defined in
Lemma 18.7.

Proof. Let c = c1 + . . . + cn ∈ B, where ci ∈ Ai for each i. Then the
2-height of the element cn ∈ An is not greater than the 2-height t of the
element bn, and, since the groupAn is cyclic, there is an integerm such that
cn = mbn. Then obviously c −mb ∈ B ∩ ((A1 ⊕ . . . ⊕ An−1)) = B′. Thus,
B = B′+D, and this sum is direct because the component bn of the element
b in An has the same order as the element b itself. �

Lemma 18.9 The group pair (A′, B′) is a relatively categorical group pair.

Proof. It is obvious that the group B′ is a characteristic subgroup of
the group A′. Further, any automorphism β′ of the group B′ extends to an
automorphism β of the direct sum B = B′ ⊕ D, which in its turn extends
to an automorphism α of the group A, because B is relatively categorical
in A. The composition of α with the projection A = A′ ⊕ An → A′ is an
endomorphism of A′, and its restriction to B′ coincides with β′; by Lemma
16.1, A′ is a relatively categorical group pair. �
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Lemma 18.10 The group 2B′ is contained in the group 2t+1A′.

Proof. Let c be an arbitrary element of B′ = A′ ∩ B; there exists an
automorphism β of the group B = B′ ⊕D which takes b to b+ c and which
is the identity on B′. Since A is a relatively categorical group pair, there
is an automorphism α of the group A which extends β. Unfortunately, we
do not know the images α(2tiai), i ∈ Γ, because 2tiai /∈ B′. But 2ti+1ai =
2siai ∈ B′, and it follows that α(2ti+1ai) = β(2ti+1ai) = 2ti+1ai for every
i ∈ Γ. Therefore

2c = β(2b) − 2b = α(2b) − 2b = (α(2t+1an) +
∑

i∈Γ α(2ti+1ai))−
−(2t+1an +

∑

i∈Γ 2ti+1ai) = 2t+1(α(an) − an) ∈ A′ ∩ 2t+1A = 2t+1A′.

Lemma 18.11 The group B′ is equal to the group 2sA′.

Proof. First suppose s = sn−1 < rn−1. Then 0 6= 2sAn−1 ⊆ 2sA′.
Further, 2sA′ ⊆ B′ because, by Lemma 18.3, si 6 s = sn−1 for each i < n,
and 2sAi ⊆ 2siAi = B ∩ Ai. By Lemma 18.10, 2B′ ⊆ 2t+1A′; but s 6 t,
therefore 2B′ ⊆ 2s+1A′. Now it follows from (d) ⇒ (b) of Theorem 18.5 that
B′ = 2sA′.

Next suppose s = rn−1. Then for each i < n− 1, ri − ti 6 rn−1 − s = 0.
This means that if c = c1 + . . . + cn−1 is an element of B′, with cj ∈ Aj for
each j, then c1 = . . . = cn−2 = 0 and c = cn−1 ∈ An−1∩B = psn−1An−1 = 0.
Therefore B′ = 0, and we have again B′ = 0 = 2sA′. �

We can now calculate si, ti and obtain information about the set Γ.

Lemma 18.12 (a) If i < n then si = min(ri, s). If i /∈ Γ then ti = si. If i ∈ Γ
then ti = si − 1. Thus Γ consists of all the indices i such that ti 6= si.

(b) If t < rn−1 then s = t. If t > rn−1 then s = rn−1 or s = rn−1 − 1.

(c) If i ∈ Γ and ri > s, then ri−1 < s or i = 1.

(d) If i ∈ Γ and ri < s < rn−1, then ri+1 > s.

(e) If n− 1 ∈ Γ and s < rn−1, then t < rn − 2.

Proof. (a) By Lemma 18.11, B ∩ A′ = 2sA′ and consequently B ∩ Ai =
2sAi for each i < n; therefore, si = min(ri, s). If i ∈ Γ, then si 6= ti and
so ti = si − 1. We have seen that B is generated by the group 2sA′ and
the element b = 2tan +

∑

i∈Γ 2tiai. Hence every element of B is the sum
2ta′ + q(2tan +

∑

i∈Γ 2tiai), with a′ ∈ A′, q ∈ Z, and for j /∈ Γ ∪ {n} its
component in Aj is contained in 2sAj = 2sjAj , which means that tj = sj .
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(b) If t < rn−1, then 0 6= 2tA′ ⊆ 2sA′ and 2B′ ⊆ 2t+1A′; using once more
Theorem 18.5, we obtain that B′ = 2tA′. Thus 0 6= 2tA′ = B′ = 2sA′, which
implies that s = t. If t > rn−1, then 2s+1An−1 = 2 ·2sAn−1 = 2(An−1∩B

′) ⊆
2B′ ⊆ 2t+1A′ = 0, which means that s+ 1 > rn−1 > s.

(c), (d), (e) Let i ∈ Γ, i < n. If both ri−1 and ri are > s, we have
s = si−1 6 ti = si − 1 = s− 1; contradiction. If both ri and ri+1 are 6 s, we
have 1 = si − ti = ri − ti 6 ri+1 − si+1 = 0; contradiction. If n− 1 ∈ Γ and
s < rn−1, then 2 6 rn−1− (s−1) = rn−1− tn−1 6 rn − sn < rn − tn = rn − t.
�

The following result is now obvious.

Lemma 18.13 There are only the following variants for the set Γ ⊆ {1, . . . , n−1}
and the integers s, t, ti (i ∈ Γ):

(a) Γ = {m− 1,m}, rm−1 < s < rm, tm−1 = rm−1 − 1, tm = s− 1, t = s.

(b) Γ = {m− 1}, rm−1 < s < rm, tm−1 = rm−1 − 1, t = s.

(c) Γ = {m}, s 6 rm, rm−1 < s or m = 1, tm = s− 1, t = s.

(d) Γ = {n − 2, n − 1}, rn−2 < s = rn−1 − 1, tn−1 = rn−1 − 2, tn−2 =
rn−2 − 1, rn−1 6 t < rn − 2.

(e) Γ = {n−1}, rn−2 < s = rn−1−1, tn−1 = rn−1−2, rn−1 6 t < rn −2.

Bringing together all the preceding results, we obtain the complete de-
scription of those finite relatively categorical characteristic p-group pairs
which are not group pair direct sums of cyclics.

Theorem 18.14 LetA be a 2-group pair which is a group direct sumA1⊕. . .⊕An

where each Ai is a nonzero direct sum of cyclic groups of order 2ri , and r1 < . . . <
rn. Further, let s 6 rn−1, Γ ⊆ {1, . . . , n − 1}, t, ti satisfy the requirements of
one of the items of Lemma 18.13. Assume that for each i ∈ Γ ∪ {n} the group
Ai is cyclic; let ai be a generator of this group. If B = AP is the direct sum of
the group 2s(A1 ⊕ . . . ⊕ An−1) and the cyclic group generated by the element
b = 2tan +

∑

i∈Γ 2tiai, then A is a relatively categorical characteristic group pair.
Conversely, any finite relatively categorical characteristic p-group pair which is
not a group pair direct sum of cyclics can be obtained in this way.

Proof. The converse statement is in fact already proved: by Theorem
18.5 if a finite relatively categorical characteristic p-group pair is not a group
pair direct sum of cyclics, then p = 2, tn 6= sn, and Lemmas 18.7 – 18.13
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show that this group pair has the structure described in the first part of
Theorem. Therefore, it remains to check that in all casesB is a characteristic
subgroup of A and that every automorphism of B can be extended to an
automorphism ofA. We shall consider only the most complicated cases (a),
(d), because the same argument (and even a part of it) works in the three
other cases.

Case (a). B is the direct sum of the group 2tA′ and the cyclic group gener-
ated by the element b = 2rm−1−1am−1 + 2t−1am + 2tan, where 1 < m < n,
rm−1 < t < rm. Note that rn − rm > 2 because rm − (t − 1) = rm − tm 6

rn − sn = rn − (t+ 1).
First we show that B is a characteristic subgroup of A. Since the group

C = 2tA′+2t+1An is contained inB and is characteristic inA, it is sufficient
to check that every elementary automorphism α of the group A takes the
element b into the coset b+C .

We can assume that the chosen basis of A contains the elements am−1,
am, an. If an automorphism of A does not move am−1, am, an, then it does
not move b. Any elementary automorphism of A which moves one of the
elements am−1, am, an is a specialisation of one of the automorphisms α, β,
γ, such that

α(am−1) = am−1 + ci, α(am) = am + cj , α(an) = an + ck;
β(am−1) = am−1 + 2h1cu, β(am) = am + 2h2cv, β(an) = an;
γ(am−1) = (2x+ 1)am−1, γ(am) = (2y + 1)am, γ(an) = (2z + 1)an,

where i < m − 1, j < m, k < n, u > m − 1, v > m, ci ∈ Ai, cj ∈ Aj ,
ck ∈ Ak, cu ∈ Au, cv ∈ Av, h1 = ru − rm−1, h2 = rv − rm, x, y, z ∈ Z. We
have:

α(b) − b = 2rm−1−1ci + 2t−1cj + 2tck = 2tck ∈ 2tA′ ⊆ C,
β(b) − b = 2h1+rm−1−1cu + 2h2+t−1cv = 2ru−1cu + 2rv−rm+t−1cv ∈ C,
γ(b) − b = x · 2rm−1am−1 + y · 2tam + z · 2t+1an ∈ C,

because rm−1−1 > ri, t−1 > rm−1 > rj , ru−1 > rm−1 > t, rv−rm+t−1 >

1 + t− 1 = t for v < n and rn − rm + t− 1 > 2 + t− 1 = t+ 1. Thus B is a
characteristic subgroup of A.

Now we prove that A is a relatively categorical group pair. The ele-
ments b, 2tam, 2ta, where a runs through all elements of the chosen basis in
Am+1 ⊕ . . . ⊕ An−1, constitute a basis of B, which we shall call the chosen
basis of B. We must prove that each elementary automorphism of B can
be extended to A. Fix an element a ∈ Aq of the chosen basis of A, where
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m < q < n, and consider the automorphisms ϕ, χ, ψ of B, which do not
move any elements of the chosen basis of B except b, 2tam, 2ta, and which
act on b, 2tam, 2ta in the following way:

ϕ(b) = b+ 2tci, ϕ(2tam) = 2tam, ϕ(2ta) = 2ta+ 2tcj;
ψ(b) = b, ψ(2tam) = 2tam + 2h12tcu + x · 2h2b,

ψ(2ta) = 2ta+ 2h32tcv + y · 2h4b;
χ(b) = (2x+ 1)b, χ(2tam) = (2y + 1)2tam, χ(2ta) = (2z + 1)2ta,

where m 6 i < n, m 6 j 6 q, m < u < n, q < v < n, ci ∈ Ai,
cj ∈ Aj , cu ∈ Au, cv ∈ Av , h1 = ru − rm, h2 = rn − rm, h3 = rv − rq,
h4 = rn − rq, x, y, z ∈ Z. Besides, we require that if j = q, then cj is not
contained in the cyclic group generated by a (otherwiseϕ is not necessarily
an automorphism). Each elementary automorphism of B can be obtained
as a specialisation of one of these automorphisms for an appropriate choice
of parameters q, a, ci etc. Therefore it is sufficient to observe that the
automorphisms of A which fix all elements of the chosen basis of A except
am, a, an and which act on am, a, an by the following rules:

am → am, a→ a+ cj , an → an + ci;
am → (1 + 2h2−1x)am + 2h1cu + 2h2xan,

a→ a+ 2h3cv + y(2h4−1am + 2h4an);
an → (1 − 2h2−1x)an − 2h1−1cu − 2h2−2xam,

am → (2y + 1)am, a→ (2z + 1)a, an → (2x+ 1)an + (x− y)am,

extend respectively ϕ, ψ, χ (note that obviously h1, h4 > 1, h2 > 2).

Case (d). B is the group generated by the elements b1 = 2san−1 and b =
2tn−2an−2+2tn−1an−1+2tan, where tn−2 = rn−2−1 < rn−1−2 = tn−1 = s−1,
rn−1 6 t < rn − 2. We check that B is a characteristic subgroup of A, i.e.,
that each elementary automorphism of A takes b and b1 into B. Note first
of all that 2t+1an = 2b− b1 ∈ B.

Assume that the chosen basis of A contains the elements an−2, an−1,
an. If an automorphism of A does not move an−2, an−1, an, then it does
not move any element of B. Any elementary automorphism of A which
moves one of the elements an−2, an−1, an is a specialisation of one of the
automorphisms α, β, γ, such that

α(an−2) = an−2 + ci, α(an−1) = an−1 + cj , α(an) = an + ck;
β(an−2) = an−2 + 2h1xan−1 + 2h2yan,

β(an−1) = an−1 + 2h3zan, β(an) = an;
γ(an−2) = (2x+ 1)an−2, γ(an−1) = (2y + 1)an−1, γ(an) = (2z + 1)an,
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where x, y, z ∈ Z, h1 = rn−1 − rn−2, h2 = rn − rn−2, h3 = rn − rn−1,
ci ∈ Ai, cj ∈ Aj , ck ∈ Ak, i < n− 2, j < n− 1, k < n. We have:

α(b) = b+ 2tn−2ci + 2tn−1cj + 2tck = b, α(b1) = b1 + 2scj = b1,

because tn−2 > rn−3 > ri, tn−1 > rn−2 > rj , t > rn−1 > rk;

β(b) = b+ 2tn−2+h1xan−1 + (2tn−2+h2y + 2tn−1+h3z)an =
= b+ xb1 + (2rn−2−ty + 2rn−3−tz) · 2t+1an ∈ B,

β(b1) = b1 + 2s+h3zan = b1 + 2rn−t−2z · 2t+1an ∈ B,

because rn − t− 2 > 0; finally,

γ(b) = b+ 2tn−2+1xan−2 + 2syan−1 + 2t+1zan = b+ (y − z)b1 + 2zb,
γ(b1) = b1 + 2y · 2san−1 = b1,

because tn−2 + 1 = rn−2, s+ 1 = rn−1. Thus B is a characteristic subgroup
of A.

To show thatA is a relatively categorical group pair, we must show that
the elementary automorphisms

b→ b+ b1, b1 → b1; b→ (2z + 1)b, b1 → b1; b→ b, b1 → b1 + 2rn−t−1b

of the group B can be extended to A. But we have just seen that the first
two of them are restrictions of γ respectively for y = 1, z = 0 and for
y = z. The endomorphism of A which takes an−1 to an−1 + 2rn−rn−1an,
an to (1 − 2rn−t−2)an and fixes all other elements of the chosen basis of A
extends the third elementary automorphism of B; since rn − t− 2 > 0, the
integer (1− 2rn−t−2) is odd, which means that the above endomorphism of
A is an automorphism.
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