Research Training Network in Model Theory
Publications > Preprint server > Preprint Number 386

Preprint Number 386

Previous Next Preprint server

386. Zoé Chatzidakis, Ehud Hrushovski
On subgroups of semi-abelian varieties defined by difference equations
E-mail: ,

Submission date: 6 December 2011.


Consider the algebraic dynamics on a torus T=G_m^n given by a matrix M in GL_n(Z). Assume that the characteristic polynomial of M is prime to all polynomials X^m-1. We show that any finite equivariant map from another algebraic dynamics onto (T,M) arises from a finite isogeny T \to T. A similar and more general statement is shown for Abelian and semi-abelian varieties.

In model-theoretic terms, our result says: Working in an existentially closed difference field, we consider a definable subgroup B of a semi-abelian variety A; assume B does not have a subgroup isogenous to A'(F) for some twisted fixed field F, and some semi-Abelian variety A'. Then B with the induced structure is stable and stably embedded. This implies in particular that for any n>0, any definable subset of B^n is a Boolean combination of cosets of definable subgroups of B^n.

This result was already known in characteristic 0 where indeed it holds for all commutative algebraic groups ([CH]). In positive characteristic, the restriction to semi-abelian varieties is necessary.

Mathematics Subject Classification:

Keywords and phrases:

Full text arXiv 1112.0920: pdf, ps.

Last updated: December 14 2011 12:33 Please send your corrections to: