Research Training Network in Model Theory
Publications > Preprint server > Preprint Number 733

Preprint Number 733

Previous Next Preprint server

733. Andreas Baudisch
Free amalgamation and automorphism groups

Submission date: 4 June 2014.


Let L be a countable elementary language, N be a Fraisse limit. We consider free amalgamation for L-structures where L is arbitrary. If free amalgamation for finitely generated substructures exits in N, then it is a stationary independece relation in the sense of K.Tent and M.Ziegler [TZ12b]. Therefore Aut(N) is universal for Aut(M) for all substructures M of N. This follows by a result of I.Müller [Mue13] We show that c-nilpotent graded Lie algebras over a finite field and c-nilpotent groups of exponent p (c < p) with extra predicates for a central Lazard series provide examples. We replace the proof in [Bau04] of the amalgamation of c-nilpotent graded Lie algebras over a field by a correct one.

Mathematics Subject Classification: 03C45

Keywords and phrases:

Full text arXiv 1406.1130: pdf, ps.

Last updated: June 6 2014 14:43 Please send your corrections to: