REPRESENTATIVE DEFINABLE C^r FUNCTIONS ON DEFINABLE C^r GROUPS

TOMOHIRO KAWAKAMI

Abstract. Let G be a compact affine definable C^r group and let r be ∞ or ω. We prove that the representative definable C^r functions on G is dense in the space of continuous functions on G.

1. Introduction.

Let $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \ldots)$ be an o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers. Everything is considered in \mathcal{M}, every definable map is assumed to be continuous and the term “definable” is used throughout in the sense of “definable with parameters in \mathcal{N}” unless otherwise stated. We assume that r denotes ∞ or ω.

General references on o-minimal structures are [1], [2], also see [13]. Definable C^r manifolds and definable G sets in \mathcal{M} are studied in [8], [7], [6].

Let G be a definable C^r group and $Def^r(G)$ denote the space of definable C^r functions. Left translations in G induce an action of G defined by $f : G \to \mathbb{R} \mapsto L(g, f) = f(g^{-1}x) : G \to \mathbb{R}$. A function f on G is representative if the functions $\{L(g, f) | g \in G\}$ generate a finite dimensional subspace of $Def^r(G)$.

Theorem 1.1. Let G be a compact affine definable C^r group. Then the representative definable C^r functions on G is dense in the strong topology in the space of continuous functions on G.

Let X be a definable C^rG manifold. We say that the action of G on X is definably C^r linearizable (resp. C^r linearizable) if there exist a definable C^r representation of G whose representation space Ω, a definable C^rG submanifold Y of Ω and a definable C^rG diffeomorphism (resp. C^r diffeomorphism) from X to Y.

Theorem 1.2. Let G be a compact affine definable C^r group and X a compact definable C^rG manifold. Then the action is C^r linearizable.

Remark that if $\mathcal{M} = \mathcal{R}$, then for any positive dimensional compact connected $C^\infty G$ manifold with non-transitive action, it admits uncountably many nonaffine definable $C^\infty G$ manifold structures ([10]). In Theorem 1.2, we cannot replace C^r linearizable by definably C^r linearizable.

Locally definable C^r manifolds are defined in [9].

2010 Mathematics Subject Classification. 57S15, 03C64.

Keywords and Phrases. O-minimal, definable C^r groups, definable C^rG manifolds.

Partially supported by Kakenhi (23540101)
Theorem 1.3. Let G be a connected locally definable C^r group and (\tilde{G}, π) the universal cover of G. Then \tilde{G} can be equipped uniquely with the structure of a locally definable C^r group such that π is a locally definable C^r group homomorphism.

A locally Nash case of Theorem 1.3 is proved in [5].

2. Preliminaries and proof of results

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f : X \to Y$ is definable if the graph of f $(\subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m)$ is a definable set.

We say that a group G is a definable group if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable.

A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a finite open cover $\{U_i\}_{i=1}^k$ of X, finite open sets $\{V_i\}_{i=1}^k$ of \mathbb{R}^n, and a finite collection of homeomorphisms $\{\phi_i : U_i \to V_i\}_{i=1}^k$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and $\phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. A definable C^r manifold X is affine if X is definably C^r diffeomorphic to a definable C^r submanifold of some \mathbb{R}^n.

A definable C^r manifold (resp. an affine definable C^r manifold) G is a definable C^r group (resp. an affine definable C^r group) if G is a group and the group operations $G \times G \to G, G \to G$ are definable C^r maps.

A subgroup of a definable C^r group is a definable subgroup of it if it is a definable C^r submanifold of it. Note that every definable C^r subgroup of a definable C^r group is closed ([12]) and a closed subgroup of a definable C^r group is not necessarily definable.

Let G be a definable C^r group. A group homomorphism from G to some $O_n(\mathbb{R})$ is a definable C^r representation if it is a definable C^r map. A definable C^r representation space of G is \mathbb{R}^n with the orthogonal action induced from a definable C^r representation of G. A definable C^rG submanifold means a G invariant definable C^r submanifold of some definable C^r representation space of G.

Let G be a definable C^r group. A definable C^rG manifold is a pair (X, ϕ) consisting of a definable C^r manifold X and a definable C^r action $\phi : G \times X \to X$ on X of G. For abbreviation, we write X instead of (X, ϕ). A definable C^rG manifold is affine if it is definably C^rG diffeomorphic to a definable C^rG submanifold of some definable C^r representation space of G.

Proof of Theorem 1.1. Since G is compact and affine, there exists a definable C^rG diffeomorphism f from G to a definable C^rG submanifold G' of some definable C^r representation space Ω of G.

Let $r : G \to \mathbb{R}$ be a continuous function. Applying Polynomial Approximation Theorem to $r \circ f^{-1} : G' \to \mathbb{R}$, we have a polynomial function $q : G' \to \mathbb{R}$ approximating $r \circ f^{-1}$. Since f is equivariant and G acts orthogonally on Ω and by P107 [11], $q \circ f : G \to \mathbb{R}$ is a representative on G which is a definable C^r function approximating r.

By a way similar to the proof of results of [10], we have the following result.

Theorem 2.1. Let G be a compact affine definable C^r group and X a compact $C^\infty G$ manifold. Then X is $C^\infty G$ diffeomorphic to a definable C^rG submanifold Y of some representation space of G.
Proof of Theorem 1.2. We only have to prove the case where \(r = \omega \). By Theorem 2.1, there exist a representation space \(\Omega \) of a definable \(C^r \) representation of \(G \), a definable \(C^r G \) submanifold \(Y \) of \(\Omega \) and a \(C^\infty G \) diffeomorphism \(f : X \to Y \). By [P 233, 4], any Whitney neighborhood of a \(C^\infty G \) map to a representation space contains a \(C^\omega G \) map. Thus we can approximate \(f \) by a \(C^\omega G \) map \(h : X \to \Omega \). Therefore we have a required \(C^\omega G \) imbedding.

A Hausdorff space \(X \) is an \(n \)-dimensional locally definable \(C^r \) manifold if there exist a countable open cover \(\{ U_i \}_{i=1}^\infty \) of \(X \), countably many open sets \(\{ V_j \}_{j=1}^\infty \) of \(\mathbb{R}^n \), and a countable collection of homeomorphisms \(\{ \phi_i : U_i \to V_i \}_{i=1}^\infty \) such that for any \(i, j \) with \(U_i \cap U_j \neq \emptyset \), \(\phi_i(U_i \cap U_j) \) is definable and \(\phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j) \) is a definable \(C^r \) diffeomorphism. We call the \((U_i, \phi_i) \)'s the definable charts of \(X \).

Note that locally definable \((C^0) \) manifolds are considered in [3]. Let \(X, Y \) be locally definable \(C^r \) manifolds with definable charts \((U_i, \phi_i)_{i \in I}, (W_j, \psi_j)_{j \in J} \) respectively. A continuous map \(f : X \to Y \) is a locally definable \(C^r \) map if for every finite subset \(I' \) of \(I \), there exists a finite subset \(J' \) of \(J \) such that \(f(\cup_{i \in I'} U_i) \subset \cup_{j \in J'} W_j \) and that \(f|_{\cup_{i \in I'} U_i : \cup_{i \in I'} U_i \to \cup_{j \in J'} W_j} \) is a definable \(C^r \) map.

A bijective locally definable \(C^r \) map \(f \) between locally definable \(C^r \) manifolds is a locally definable \(C^r \) diffeomorphism if \(f^{-1} \) is a locally definable \(C^r \) map.

A locally definable \(C^r \) manifold \(X \) is affine if \(X \) is locally definably \(C^r \) diffeomorphic to a locally definable \(C^r \) submanifold of some \(\mathbb{R}^n \). Note that for any positive integer \(s \), a locally definable \(C^r \) manifold is locally definably \(C^s \) imbeddable into some \(\mathbb{R}^l \) (1.3 [9]).

A locally definable \(C^r \) manifold \((\text{resp. an affine locally definable } C^r \text{ manifold}) \) \(G \) is a locally definable \(C^r \) group \((\text{resp. an affine locally definable } C^r \text{ group}) \) if \(G \) is a group and the group operations \(G \times G \to G, G \to G \) are locally definable \(C^r \) maps.

Proof of Theorem 1.3. By the construction of the universal cover \(\tilde{G} \) of \(G \), \(\tilde{G} \) is a \(C^r \) group whose charts are countable and \(\pi \) is a \(C^r \) map. Since \(G \) is a locally definable \(C^r \) group, every transition function is definable. □

References

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp