UNIVERSITE DE PARIS VII, UFR DE MATHEMATIQUES
*** Théorie des Modèles et Groupes ***

Responsables: Z. Chatzidakis, F. Oger, F. Point.
Tous les mardis ouvrables: à 16h00. Bâtiment Sophie Germain. (Exceptionnellement, sur annonce, pourra avoir lieu à 14h).
Pour recevoir le programme par email : oger_at_math.univ-paris-diderot.fr


Année 2017 - 2018
Liste des exposés précédents et résumés

Mardi 10 octobre : Salma Kuhlmann (Konstanz), Groupes abéliens divisibles ordonnés ayant la propriété de relèvement.

Le théorème de Hahn asserte que tout groupe abélien divisible ordonné (GADO) est (à isomorphie près) un sous groupe du produit de Hahn, et contient la somme de Hahn (le produit et la somme en question étant pris au-dessus du squelette de G). Le squelette de G étant un invariant valuatif, il est facile de voir que tout automorphisme de G induit un automorphisme de son squelette.

Dans cet exposé, nous nous penchons sur la réciproque: peut-on caractériser les GADOs pour lesquels tout automorphisme du squelette se relève en un automorphisme du groupe?. Il est facile de vérifier que la somme et produit de Hahn, et en fait, tout groupe de séries de Hahn κ-bornées (pour un cardinal infini κ), ont cette propriété de relèvement, mais on est loin d'une caractérisation générale. En particulier, il serait utile de savoir si tout groupe exponentiel a cette propriété.


Mardi 24 octobre : Françoise Point (Mons - IMJ), Définissabilité des types et VC densité dans les corps topologiques différentiels.

Etant donnée une théorie T modèle-complete de corps topologiques, on considère son expansion différentielle générique et sous une hypothèse de largeur sur le corps, on peut axiomatiser la classe des modèles existentiellement clos.
On montrera un résultat de densité sur les types définissables sur des sous-ensembles définitionnellement clos dans les modèles de telles théories. Ensuite on montrera deux résultats de transfert l'un sur la VC-densité (lorsque T est NIP) et l'autre sur la propriété combinatoire NTP2.


Pablo Cubides-Kovacsics (Caen), Autour des extensions séparées de corps valués

Une extension de corps valués (K ⊆ L, v) est dite séparée si tout K-sous espace vectoriel V ⊆ L de dimension finie admet une base séparée, c'est-à-dire, une base {u_1, ... ,u_n} telle que pour tout k_1,...,k_n in K,

v(Σ_{i=1}^n k_i u_i) = min_i {v (k_iu_i)}.

Différents résultats autour de ces extensions, notamment issus des travaux de Walter Baur et de Françoise Delon, utilisent des outils de la théorie des modèles de paires de corps valués. Dans cet exposé je revisiterai certains de ces résultats en essayant de garder un point de vue algébrique. De plus, je discuterai le lien avec les extensions algébriques dites sans défaut. Il s'agit d'un travail en commun avec Ania Blaszczok et Franz-Viktor Kuhlmann.


Mardi 28 novembre : Francis Oger (CNRS - Paris 7), Equivalence élémentaire entre anneaux à groupe additif de type fini

Cet exposé est basé sur un travail de A.G. Myasnikov et M. Sohrabi. Les anneaux considérés ne sont pas supposés commutatifs, associatifs ou unitaires.
Je donnerai des caractérisations algébriques de l'équivalence élémentaire pour les anneaux R avec (R,+) de type fini (i.e. finiment engendré). Les résultats sont analogues à ceux que j'avais précédemment obtenus pour les groupes nilpotents de type fini.


Retour à la page du séminaire et années précédentes : 99 - 00, 00 - 01, 01 - 02, 02 - 03, 03 - 04, 04 - 05, 05 - 06, 06 - 07, 07 - 08, 08 - 09, 09 - 10, 10 - 11, 11 - 12, 12 - 13, 13 - 14, 14 - 15, 15 - 16, 16 - 17.