Perfect Trees and Large Cardinals

κ is measurable iff there is $j : V \to M$ with critical point κ

κ is λ-hypermeasurable iff in addition $H(\lambda) \subseteq M$

κ is λ-supercompact iff in addition $M^\lambda \subseteq M$

(Measurable $=$ κ^+-hypermeasurable $=$ κ-supercompact.)

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in $V[G]$?
Lifting method (Silver):

Given $j : V \to M$ and P-generic G over V.

Let P^* be $j(P)$.

Find P^*-generic G^* over M s.t. $j[G] \subseteq G^*$.

Then $j : V \to M$ lifts to $j^* : V[G] \to M[G^*]$.

If G^* belongs to $V[G]$ then j^* is $V[G]$-definable, so κ is still measurable (and maybe more) in $V[G]$.
Singular cardinal hypothesis

SCH: The GCH holds at singular, strong limit cardinals

Prikry: Con(GCH fails at a measurable) \rightarrow Con(\text{not SCH})

Silver: Con(\kappa \text{ is } \kappa^{++}-\text{supercompact}) \rightarrow Con(\text{GCH fails at a measurable})

Easy fact: GCH fails at measurable \kappa \rightarrow GCH fails at measure-one \alpha < \kappa.

So for Silver’s theorem, must violate GCH not only at \kappa, but also below \kappa.
Silver’s strategy: Iterated Cohen forcing

Cohen(\(\alpha, \alpha^{++}\)) = \alpha^{++}\)-product of \(\alpha\)-Cohen forcing (with supports of size < \(\alpha\))

\(P_0\) is trivial
\(P_{\alpha+1} = P_\alpha * \text{Cohen}(\alpha, \alpha^{++}), \ \alpha \text{ inaccessible}\)
\(P_{\alpha+1} = P_\alpha, \ \text{otherwise}\)
Inverse limits at singular ordinals, direct limits otherwise

\(P = \text{Direct limit of } P_\alpha, \ \alpha \in \text{Ord}.\)

\(P\) preserves cofinalities and forces not GCH at each inaccessible.
Assume GCH in \(V \).
Let \(j : V \to M \) witness \(\kappa^{++} \)-supercompactness.
Let \(G \) be \(P \)-generic.
Want generic \(G^* \) for \(P^* = j(P), j[G] \subseteq G^* \).

Write \(P^* = P^* (\langle j(\kappa) \rangle) * P^* (j(\kappa)) * P^* (\rangle j(\kappa)) \).

1. (Below \(j(\kappa) \)) Easy to build generic \(G^* (\langle j(\kappa) \rangle) \) containing \(j[G(\langle \kappa \rangle)] = G(\langle \kappa \rangle) \).

2. (At \(j(\kappa) \), key step) Using supercompactness, the conditions in \(j[G(\kappa)] \subseteq P^* (j(\kappa)) \) have a common lower bound (master condition) \(p \).
 Choose \(G^* (j(\kappa)) \) to include \(p \).

3. (Above \(j(\kappa) \)) Using distributivity of \(P(\rangle \kappa) \), easy to show that \(j[G(\rangle \kappa)] \) generates a generic \(G^* (\rangle j(\kappa)) \).

So \(G^* = G^* (\langle j(\kappa) \rangle) * G^* (j(\kappa)) * G^* (\rangle j(\kappa)) \) contains \(j[G] \), as desired.
Woodin: Can replace κ^{++}-supercompactness with κ^{++}-hyperstrength in the Silver strategy.

Subtle argument:

Derived measure: Use both $j : V \to M$ and its derived measure embedding $j_0 : V \to M_0$.

Leaving the universe: Force a generic $G_0^*(j_0(\kappa))$ over $V[G]$. κ is measurable in $V[G][G_0^*(j_0(\kappa))]$.

Generic modification: Use $G_0^*(j_0(\kappa))$ to obtain a generic $G^*(j(\kappa))$ for $P^*(j(\kappa))$, which must be modified to get the desired generic $G^*(j(\kappa))$.

A new strategy: Iterated Sacks forcing

Let α be inaccessible.

α-Sacks: α-closed, binary trees of height α, with CUB-many splitting levels.

In the Silver strategy, replace Cohen(α, α^{++}) by Sacks(α, α^{++}), the α^{++}-product of α-Sacks (with supports of size α).
Assume GCH in V.
Let $j : V \to M$ witness κ^{++}-hypermeasurability.
Let G be generic for $P = \text{iterated Sacks}(\alpha, \alpha^{++})$.
Let $P^* = j(P)$.
We want a P^*-generic G^* s.t. $j[G] \subseteq G^*$.

The construction of G^* is now easy.
Do not need the derived measure, leaving the universe or generic modification.

α-Sacks has a weak form of α^+-closure called α-fusion:

Write $S \leq^i T$ iff $S \leq T$ and S has the same i-th splitting level as T. Then any sequence $T_0 \geq_0 T_1 \geq_1 T_2 \geq_2 \cdots$ of length α has a lower bound.

α-Sacks is α-closed and α^{++}-cc.
α-fusion implies that α^+ is preserved.
If G is α-Sacks generic then $G = \{T \mid f \in [T]\}$ for some unique $f : \alpha \to 2$. We also say that f is α-Sacks generic.

Tuning fork lemma (F - Katie Thompson)
Suppose $j : V \to M$ with critical point κ and G is κ-Sacks generic. Then the intersection of the trees in $j[G]$ consists of exactly two $f_0, f_1 : j(\kappa) \to 2$, which agree below κ and disagree at κ. Moreover each f_i is $j(\kappa)$-Sacks generic over M.

Reason: The splitting levels of $j(T)$, $T \in G$, form CUB subsets $j(C)$ of $j(\kappa)$. The intersection of the $j(C)$’s is $\{\kappa\}$. (We assume that j is given by an extender ultrapower.)

There is a version of the Tuning Fork Lemma for Sacks(κ, κ^{++}), giving:
Theorem 1. (F - Thompson) Assume GCH. Suppose $j : V \to M$ witnesses that κ is κ^{++}-hypermeasurable and G is generic for the iteration of Sacks(α, α^{++}), α inaccessible. Then j lifts to $j^* : V[G] \to M[G^*]$, witnessing the failure of GCH at the measurable cardinal κ.

Using a result of Gitik, we also get:

$\text{Con}(\rho(\kappa) = \kappa^{++}) \leftrightarrow \text{Con}(\text{GCH fails at a measurable})$
The Tree Property and Large Cardinals

\(\kappa\)-Aronszajn tree = \(\kappa\)-tree with no \(\kappa\)-branch

TP(\(\kappa\)): There is no \(\kappa\)-Aronszajn tree.

GCH holds at \(\kappa\) \(\rightarrow\) TP(\(\kappa^{++}\)) fails

Question: What is the consistency strength of TP(\(\kappa^{++}\)), \(\kappa\) measurable?

Lemma (F - Natasha Dobrinen) Assume GCH, \(\kappa\) is regular, \(\lambda\) is weakly compact, \(\kappa < \lambda\) and \(G\) is generic for Sacksi(t)(\(\kappa, \lambda\)) = the \(\lambda\)-iteration of \(\kappa\)-Sacks (with supports of size \(\kappa\)). Then in \(V[G]\), \(\lambda = \kappa^{++}\) and TP(\(\kappa^{++}\)) holds.

Using a version of the Tuning Fork Lemma, we get:
Theorem 2. (F - Dobrinen) Assume GCH and $j : V \to M$ witnesses that κ is λ-hypermeasurable, where λ is weakly compact and greater than κ. Let G be generic for the iteration of Sacksit(α, λ_α), α an inaccessible limit of weakly compacts, λ_α the least weakly compact above α. Then in $V[G]$, κ is measurable and $\text{TP}(\kappa^{++})$ holds.

The upper bound given by Theorem 2 is nearly optimal:

$$\text{Con}(\kappa \text{ is weakly compact hypermeasurable}) \rightarrow \text{Con}(\text{TP}(\kappa^{++}), \kappa \text{ measurable}) \rightarrow \text{Con}(\kappa \text{ is } < \text{ weakly compact hypermeasurable})$$
Easton’s theorem and large cardinals

Easton: Con(GCH fails at all regulars)

Question: What is the consistency strength of GCH fails at all regulars and there is a measurable cardinal?

We saw:
Con(κ++-hypermeasurable) → Con(GCH fails at a measurable)

The same proof yields:
Con(κ++-hypermeasurable) → Con(GCH fails at all regulars except at α+, α++ when α is inaccessible)

Using Sacks(α, α++) at inaccessibles and Cohen(α, α++) elsewhere, one gets:
Theorem 3. (F - Radek Honzík) Assume GCH. There is a forcing P such that if G is P-generic then GCH fails at all regulars in $V[G]$. Moreover, if κ is κ^{++}-hypermeasurable in V, then κ remains measurable in $V[G]$.

One can also replace κ^{++}-hypermeasurable by $o(\kappa) = \kappa^{++}$, the optimal hypothesis.
Global Domination

So far: Large cardinal preservation

Now: Internal consistency

φ is internally consistent iff φ holds in an inner model (assuming large cardinals).

ICon(φ) = φ is internally consistent.

Consistency result:
Con(ZFC + large cardinals) → Con(ZFC + φ)

Internal consistency result:
ICon(ZFC + large cardinals) → ICon(ZFC + φ)
Examples:

(a) (Easton) $\text{Con}(\text{ZFC}) \rightarrow \text{Con}(\text{ZFC} + \text{GCH fails at all regulars})$
(b) (F - Ondřejovič) $\text{ICon}(\text{ZFC} + 0\# \text{ exists}) \rightarrow \text{ICon}(\text{ZFC} + \text{GCH fails at all regulars})$

(F - Dobrinen)
(a) $\text{Con}(\text{ZFC} + \text{proper class of } \omega_1\text{-Erdős cards}) \rightarrow \text{Con}(\text{ZFC} + \text{Global costat of ground model})$
(b) $\text{ICon}(\text{ZFC} + \omega_1\text{-Erdős hyperstrong with a sufficiently large measurable above}) \rightarrow \text{ICon}(\text{ZFC} + \text{Global costat of ground model})$

(a) $\text{Con}(\text{ZFC}) \rightarrow \text{Con}(\text{ZFC} + \text{no } L\text{-inaccessible})$
(b) $\sim \text{ICon}(\text{ZFC} + \text{no } L\text{-inaccessible})$

Internal consistency strength: What large cardinals are needed to prove $\text{ICon}(\varphi)$?
An application of perfect trees to internal consistency strength:

\[d(\kappa) = \text{dominating number for } f : \kappa \to \kappa \]

\[\kappa < d(\kappa) \leq 2^\kappa \]

Global Domination: \(d(\kappa) < 2^\kappa \) for all \(\kappa \).

Cummings-Shelah: \(\text{Con}(\text{ZFC}) \rightarrow \text{Con}(\text{ZFC} + \text{Global Domination}) \)

Proof uses \(\text{Cohen}(\alpha, \alpha^{++}) \ast \text{Hechlerit}(\alpha, \alpha^+) \) for all regular \(\alpha \) and gives:

\[\text{ICon}(\text{ZFC} + \kappa^+-\text{supercompact} + \text{measurable above}) \rightarrow \text{ICon}(\text{ZFC} + \text{Global Domination}) \]

Replacing \(\text{Cohen}(\alpha, \alpha^{++}) \ast \text{Hechlerit}(\alpha, \alpha^+) \) with \(\text{Sacks}(\alpha, \alpha^{++}) \) for inaccessible \(\alpha \) gives:
(F - Thompson)
ICon(ZFC + 0# exists) →
ICon(ZFC + Global Domination except at \(\alpha^+\), \(\alpha\) inaccessible)

And with Cohen(\(\alpha^+, \alpha^{+++}\)) followed by an interlacing of Hechlerit(\(\alpha^+, \alpha^{++}\)) with Sacksit(\(\alpha, \alpha^{++}\)) for inaccessible \(\alpha\), we get:

Theorem 4. (F - Thompson)
ICon(ZFC + 0# exists) →
ICon(ZFC + Global Domination)

Conclusion

For large cardinal preservation and internal consistency, Sacks is better than Cohen!