Forcing axioms and cardinal arithmetic

Boban Velickovic

Equipe de Logique
Université de Paris 7

Logic Colloquium 2006, Nijmegen,
July 27- August 2 2006
Outline

1. Inner models of forcing axioms
2. Definable well orderings of the reals
 - The coding
 - The well ordering
3. Härtig quantifier
4. ω-sequences
5. Open problems
Outline

1. Inner models of forcing axioms
2. Definable well orderings of the reals
 - The coding
 - The well ordering
3. Härting quantifier
4. ω-sequences
5. Open problems
Inner models of forcing axioms

Problem

Is there an inner model theory for forcing axioms? To what extent is a model of a forcing axiom determined by its cardinal structure? By a *model* we mean a transitive model containing all the ordinals.

Question

If $V \subseteq W$ are models of some strong forcing axiom and V and W have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?
Inner models of forcing axioms

Problem

Is there an inner model theory for forcing axioms? To what extent is a model of a forcing axiom determined by its cardinal structure? By a *model* we mean a transitive model containing all the ordinals.

Question

If $V \subseteq W$ are models of some strong forcing axiom and V and W have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?
The motivation for this investigation comes from the following observation I made in 1986.

Theorem (V.)

If V satisfies MM and M is an inner model of V such that $\aleph_2^M = \aleph_2^V$ then $\mathcal{P}(\omega_1)^V \subseteq M$.

In fact, this is a consequence of stationary set reflection and the following result of Gitik.

Theorem (Gitik)

Suppose $M \subseteq V$ are models of set theory and there is a real $x \in V \setminus M$. Then the set $([\omega_2]^{\aleph_0})^V \setminus M$ is stationary in V.
The motivation for this investigation comes from the following observation I made in 1986.

Theorem (V.)

If V satisfies MM and M is an inner model of V such that $\aleph_2^M = \aleph_2^V$ then $\mathcal{P}(\omega_1)^V \subseteq M$.

In fact, this is a consequence of stationary set reflection and the following result of Gitik.

Theorem (Gitik)

Suppose $M \subseteq V$ are models of set theory and there is a real $x \in V \setminus M$. Then the set $([\omega_2]^{\aleph_0})^V \setminus M$ is stationary in V.
The motivation for this investigation comes from the following observation I made in 1986.

Theorem (V.)

If V satisfies MM and M is an inner model of V such that $\aleph_2^M = \aleph_2^V$ then $\mathcal{P}(\omega_1)^V \subseteq M$.

In fact, this is a consequence of stationary set reflection and the following result of Gitik.

Theorem (Gitik)

Suppose $M \subseteq V$ are models of set theory and there is a real $x \in V \setminus M$. Then the set $([\omega_2]^\aleph_0)^V \setminus M$ is stationary in V.
The motivation for this investigation comes from the following observation I made in 1986.

Theorem (V.)

If V satisfies MM and M is an inner model of V such that $\kappa_2^M = \kappa_2^V$ then $\mathcal{P}(\omega_1)^V \subseteq M$.

In fact, this is a consequence of stationary set reflection and the following result of Gitik.

Theorem (Gitik)

Suppose $M \subseteq V$ are models of set theory and there is a real $x \in V \setminus M$. Then the set $([\omega_2]^{\aleph_0})^V \setminus M$ is stationary in V.
Proof

For each $\alpha \in [\omega_1, \omega_2)$ choose in M a closed unbounded set $C_\alpha \subseteq [\alpha]^{\aleph_0}$. Let $S = \bigcup_\alpha C_\alpha$. By Gitik’s result if $\mathbb{R}^V \not\subseteq M$ then $E = [\omega_2]^{\aleph_0} \setminus S$ is stationary. By SSR* there is $\alpha < \omega_2$ such that $E \cap [\alpha]^{\aleph_0}$ is stationary, which is a contradiction. Thus, $\mathbb{R}^M = \mathbb{R}^V$. But then by almost disjoint coding $\mathcal{P}(\omega_1)^V \subseteq M$. \hfill \qed
Why require V and W to have the same cardinals? We want to avoid situations like the following.

Example

- Suppose V satisfies say MM and has a supercompact cardinal. We can first collapse cardinals and then force MM all over again to obtain a generic extension W of V such that V and W both satisfy MM but otherwise have little in common.
Why require V and W to have the same cardinals? We want to avoid situations like the following.

Example

- If V has a proper class of completely Jónsson cardinals and G is generic for the class stationary tower forcing \mathbb{P}_∞ and $W = V[G]$ then there is an elementary embedding $j : V \to W$

 and we can arrange $cp(j)$ to be arbitrary high and of cofinality ω in W.
We saw that forcing axioms imply that the continuum is \aleph_2 and more generally that $\kappa^{\aleph_1} = \kappa$, for all regular $\kappa \geq \aleph_2$. Now we ask how closely do forcing axioms tie the reals and more generally ω_1-sequences of ordinals to ordinals. This is closely related to the question of definitability of well orderings of the reals one can obtain from forcing axioms.

One convenient way to express this is by using the Härting quantifier.
We saw that forcing axioms imply that the continuum is \aleph_2 and more generally that $\kappa^{\aleph_1} = \kappa$, for all regular $\kappa \geq \aleph_2$.

Now we ask how closely do forcing axioms tie the reals and more generally ω_1-sequences of ordinals to ordinals. This is closely related to the question of definability of well orderings of the reals one can obtain from forcing axioms.

One convenient way to express this is by using the Härtig quantifier.
Definition The Härting quantifier

The logic \(\mathcal{L}(I) \) is obtained by augmenting first-order logic with the binary quantifier \(I \). If \(\mathcal{M} = (M, \ldots) \) is a structure,

\[
\mathcal{M} = (M, \ldots) \models lxy (\phi(x), \psi(y))
\]

iff

\[
|\{ b \in M : \mathcal{M} \models \phi(b) \}| = |\{ c \in M : \mathcal{M} \models \psi(c) \}|.
\]

One is then interested in the expressive power of the logic \(\mathcal{L}(I) \) under the assumption of strong forcing axioms.

Question

What is the complexity of the set of validities \(V_I \) of the logic \(\mathcal{L}(I) \)?
Definition The Hártig quantifier

The logic $\mathcal{L}(I)$ is obtained by augmenting first-order logic with the binary quantifier I. If $\mathcal{M} = (M, \ldots)$ is a structure,

$$\mathcal{M} = (M, \ldots) \models Ix y \phi(x), \psi(y)$$

iff

$$|\{ b \in M : \mathcal{M} \models \phi(b) \}| = |\{ c \in M : \mathcal{M} \models \psi(c) \}|.$$

One is then interested in the expressive power of the logic $\mathcal{L}(I)$ under the assumption of strong forcing axioms.

Question

What is the complexity of the set of validities V_I of the logic $\mathcal{L}(I)$?
Definition The Härtig quantifier

The logic $\mathcal{L}(I)$ is obtained by augmenting first-order logic with the binary quantifier I. If $\mathcal{M} = (M, \ldots)$ is a structure,

$$\mathcal{M} = (M, \ldots) \models Ixy(\phi(x), \psi(y))$$

iff

$$|\{ b \in M : \mathcal{M} \models \phi(b) \}| = |\{ c \in M : \mathcal{M} \models \psi(c) \}|.$$

One is then interested in the expressive power of the logic $\mathcal{L}(I)$ under the assumption of strong forcing axioms.

Question

What is the complexity of the set of validities V_I of the logic $\mathcal{L}(I)$?
Outline

1 Inner models of forcing axioms

2 Definable well orderings of the reals
 - The coding
 - The well ordering

3 Härtig quantifier

4 \(\omega \)-sequences

5 Open problems
Typically one proves that a forcing axiom implies $2^\aleph_1 = \aleph_2$ by showing that there is a definable (with parameters) injection of $\mathcal{P}(\omega_1)/\text{NS}_{\omega_1}$ into ω_2.

For instance, assuming MRP we saw that to each $\delta < \omega_2$ of cofinality ω_1 we can assign the equivalence class modulo NS_{ω_1} $[A_\delta]$ of a subset A_δ of ω_1 such that for every $A \subseteq \omega_1$ there is δ such that $[A] = [A_\delta]$.
Typically one proves that a forcing axiom implies $2^\aleph_1 = \aleph_2$ by showing that there is a definable (with parameters) injection of $\mathcal{P}(\omega_1)/\mathcal{NS}_{\omega_1}$ into ω_2.

For instance, assuming MRP we saw that to each $\delta < \omega_2$ of cofinality ω_1 we can assign the equivalence class modulo \mathcal{NS}_{ω_1} $[A_\delta]$ of a subset A_δ of ω_1 such that for every $A \subseteq \omega_1$ there is δ such that $[A] = [A_\delta]$.
To get a well ordering of $\mathcal{P}(\omega)$ fix a partition $\omega_1 = \bigcup_n S_n$ into disjoint stationary sets. Given a real $r \in \mathcal{P}(\omega)$ let δ_r be the least δ such that $[A_\delta] = [\bigcup_{n \in r} S_n]$. So, let

$$r < s \text{ iff } \delta_r < \delta_s.$$

$<$ is a well ordering of $\mathcal{P}(\omega)$ and is Δ_2-definable over (H_{\aleph_2}, \in).

Why Δ_2?

Because saying that a subset of ω_1 is stationary costs us a quantifier.
To get a well ordering of $\mathcal{P}(\omega)$ fix a partition $\omega_1 = \bigcup_n S_n$ into disjoint stationary sets. Given a real $r \in \mathcal{P}(\omega)$ let δ_r be the least δ such that $[A_\delta] = [\bigcup_{n \in r} S_n]$. So, let

$$r < s \text{ iff } \delta_r < \delta_s.$$

$< \text{ is a well ordering of } \mathcal{P}(\omega) \text{ and is } \Delta_2\text{-definable over } (H_{\aleph_2}, \in).$

Why Δ_2?

Because saying that a subset of ω_1 is stationary costs us a quantifier.
To get a well ordering of $\mathcal{P}(\omega)$ fix a partition $\omega_1 = \bigcup_n S_n$ into disjoint stationary sets. Given a real $r \in \mathcal{P}(\omega)$ let δ_r be the least δ such that $[A_\delta] = [\bigcup_{n \in r} S_n]$. So, let

$$r < s \text{ iff } \delta_r < \delta_s.$$

$<$ is a well ordering of $\mathcal{P}(\omega)$ and is Δ_2-definable over (H_{\aleph_2}, \in).

Why Δ_2?

Because saying that a subset of ω_1 is stationary costs us a quantifier.
To get a well ordering of $\mathcal{P}(\omega)$ fix a partition $\omega_1 = \bigcup_n S_n$ into disjoint stationary sets. Given a real $r \in \mathcal{P}(\omega)$ let δ_r be the least δ such that $[A_\delta] = [\bigcup_{n \in r} S_n]$. So, let

$$r < s \text{ iff } \delta_r < \delta_s.$$

$<$ is a well ordering of $\mathcal{P}(\omega)$ and is Δ_2-definable over (H_{\aleph_2}, \in).

Why Δ_2?

Because saying that a subset of ω_1 is stationary costs us a quantifier.
We will discuss the following two theorems.

Theorem (Caicedo, V.)

Assume $V \subseteq W$ are two models of set theory, $\aleph_2^V = \aleph_2^W$ and BPFA holds in both V and W. Then $\mathcal{P}(\omega_1)^W \subseteq V$.

Theorem (Caicedo, V.)

Assume BPFA. Then there is a Δ_1-definable well-ordering of $\mathcal{P}(\omega_1)$ with parameter a subset of ω_1. The length of the well-ordering is ω_2.

We will discuss the following two theorems.

Theorem (Caicedo, V.)
Assume $V \subseteq W$ are two models of set theory, $\kappa_2^V = \kappa_2^W$ and BPFA holds in both V and W. Then $\mathcal{P}(\omega_1)^W \subseteq V$.

Theorem (Caicedo, V.)
Assume BPFA. Then there is a Δ_1-definable well-ordering of $\mathcal{P}(\omega_1)$ with parameter a subset of ω_1. The length of the well-ordering is ω_2.
We will discuss the following two theorems.

Theorem (Caicedo, V.)

Assume $V \subseteq W$ are two models of set theory, $\aleph_2^V = \aleph_2^W$ and BPFA holds in both V and W. Then $\mathcal{P}(\omega_1)^W \subseteq V$.

Theorem (Caicedo, V.)

Assume BPFA. Then there is a Δ_1-definable well-ordering of $\mathcal{P}(\omega_1)$ with parameter a subset of ω_1. The length of the well-ordering is ω_2.
We start by defining the oscillation of sets of integers.

Given \(x, y, z \subseteq \omega \) we first define an equivalence relation \(\sim_x \) on \(\omega \setminus x \), by setting \(n \sim_x m \iff [n, m] \cap x = \emptyset \). The \(\sim_x \)-equivalence classes are the intervals between the consecutive members of \(x \). Let \((I_k)_k \) be the increasing enumeration of those classes which intersect both \(y \) and \(z \).
In the case we are interested in \(t \) is finite. We define the oscillation \(o(x, y, z) : t \rightarrow \{0, 1\} \) by

\[
osc(x, y, z)(k) = 0 \text{ iff } \min(y \cap I_k) \leq \min(z \cap I_k)
\]
The coding

Fix a C-sequence $\vec{C} = (C_\xi : \xi < \omega_1 \& \lim(\xi))$, i.e., C_ξ is cofinal in ξ of order type ω, for all limit $\xi < \omega_1$.

We code reals by triples of ordinals $< \omega_2$ and then use almost disjoint coding to code subsets of ω_1 by reals.

Suppose $\omega_1 < \beta < \gamma < \delta$ are limit ordinals and $N \subseteq M \subseteq \delta$ countable sets of ordinals.

Assume $\{\omega_1, \beta, \gamma\} \subset N$, that $\sup(\xi \cap N) < \sup(\xi \cap M)$ and $\sup(\xi \cap M)$ is a limit ordinal, for every $\xi \in \{\omega_1, \beta, \gamma, \delta\}$. We define a finite $\{0, 1\}$-sequence

$$s_{\beta \gamma \delta}(N, M).$$

using the oscillation of N and M relative to β, γ and δ and the fixed parameter \vec{C}.
Fix a C-sequence $\vec{C} = (C_\xi : \xi < \omega_1 \& \lim(\xi))$, i.e., C_ξ is cofinal in ξ of order type ω, for all limit $\xi < \omega_1$.

We code reals by triples of ordinals $< \omega_2$ and then use almost disjoint coding to code subsets of ω_1 by reals.

Suppose $\omega_1 < \beta < \gamma < \delta$ are limit ordinals and $N \subseteq M \subseteq \delta$ countable sets of ordinals.

Assume $\{\omega_1, \beta, \gamma\} \subset N$, that $\sup(\xi \cap N) < \sup(\xi \cap M)$ and $\sup(\xi \cap M)$ is a limit ordinal, for every $\xi \in \{\omega_1, \beta, \gamma, \delta\}$. We define a finite $\{0, 1\}$-sequence

$$s_{\beta\gamma\delta}(N, M).$$

using the oscillation of N and M relative to β, γ and δ and the fixed parameter \vec{C}.
Fix a C-sequence $\tilde{C} = (C_\xi : \xi < \omega_1 \& \lim(\xi))$, i.e., C_ξ is cofinal in ξ of order type ω, for all limit $\xi < \omega_1$.

We code reals by triples of ordinals $< \omega_2$ and then use almost disjoint coding to code subsets of ω_1 by reals.

Suppose $\omega_1 < \beta < \gamma < \delta$ are limit ordinals and $N \subseteq M \subseteq \delta$ countable sets of ordinals.

Assume $\{\omega_1, \beta, \gamma\} \subset N$, that $\sup(\xi \cap N) < \sup(\xi \cap M)$ and $\sup(\xi \cap M)$ is a limit ordinal, for every $\xi \in \{\omega_1, \beta, \gamma, \delta\}$. We define a finite $\{0, 1\}$-sequence $s_{\beta\gamma\delta}(N, M)$ using the oscillation of N and M relative to β, γ and δ and the fixed parameter \tilde{C}.

Fix a C-sequence $\tilde{C} = (C_\xi : \xi < \omega_1 \& \lim(\xi))$, i.e., C_ξ is cofinal in ξ of order type ω, for all limit $\xi < \omega_1$.

We code reals by triples of ordinals $< \omega_2$ and then use almost disjoint coding to code subsets of ω_1 by reals.

Suppose $\omega_1 < \beta < \gamma < \delta$ are limit ordinals and $N \subseteq M \subseteq \delta$ countable sets of ordinals. Assume $\{\omega_1, \beta, \gamma\} \subset N$, that $\sup(\xi \cap N) < \sup(\xi \cap M)$ and $\sup(\xi \cap M)$ is a limit ordinal, for every $\xi \in \{\omega_1, \beta, \gamma, \delta\}$. We define a finite $\{0, 1\}$-sequence

$$s_{\beta\gamma\delta}(N, M).$$

using the oscillation of N and M relative to β, γ and δ and the fixed parameter \tilde{C}.

Fix a C-sequence $\vec{C} = (C_\xi : \xi < \omega_1 & \lim(\xi))$, i.e., C_ξ is cofinal in ξ of order type ω, for all limit $\xi < \omega_1$.

We code reals by triples of ordinals $< \omega_2$ and then use almost disjoint coding to code subsets of ω_1 by reals.

Suppose $\omega_1 < \beta < \gamma < \delta$ are limit ordinals and $N \subseteq M \subseteq \delta$ countable sets of ordinals.

Assume $\{\omega_1, \beta, \gamma\} \subset N$, that $\sup(\xi \cap N) < \sup(\xi \cap M)$ and $\sup(\xi \cap M)$ is a limit ordinal, for every $\xi \in \{\omega_1, \beta, \gamma, \delta\}$. We define a finite $\{0, 1\}$-sequence

$$s_{\beta\gamma\delta}(N, M).$$

using the oscillation of N and M relative to β, γ and δ and the fixed parameter \vec{C}.
Fix a C-sequence $\bar{C} = (C_\xi : \xi < \omega_1 \& \lim(\xi))$, i.e., C_ξ is cofinal in ξ of order type ω, for all limit $\xi < \omega_1$.

We code reals by triples of ordinals $< \omega_2$ and then use almost disjoint coding to code subsets of ω_1 by reals.

Suppose $\omega_1 < \beta < \gamma < \delta$ are limit ordinals and $N \subseteq M \subseteq \delta$ countable sets of ordinals.

Assume $\{\omega_1, \beta, \gamma\} \subset N$, that $\sup(\xi \cap N) < \sup(\xi \cap M)$ and $\sup(\xi \cap M)$ is a limit ordinal, for every $\xi \in \{\omega_1, \beta, \gamma, \delta\}$. We define a finite $\{0, 1\}$-sequence

$$s_{\beta\gamma\delta}(N, M).$$

using the oscillation of N and M relative to β, γ and δ and the fixed parameter \bar{C}.
Let $\pi_M : M \to \tilde{M}$ be the transitive collapse. Let $\alpha_M = \pi_M(\omega_1)$, $\beta_M = \pi_M(\beta)$, $\gamma_M = \pi_M(\gamma)$ and $\delta_M = \tilde{M} = ot(M)$. Each of these is a countable limit ordinal.

Let

- $ht_{\alpha_M}(\alpha_N) = |C_{\alpha_M} \cap \alpha_N| = n(N, M) = n$
- $x = \{\pi_M(\xi) \cap \beta_M : \xi \in N \cap \beta\}$
- $y = \{\pi_M(\xi) \cap \gamma_M : \xi \in N \cap \gamma\}$
- $x = \{\pi_M(\xi) \cap \delta_M : \xi \in N \cap \delta\}$

If $osc(x \setminus n, y \setminus n, z \setminus n)$ is a sequence of length $\geq n$ let

$$s_{\beta,\gamma,\delta}(N, M) = osc(x \setminus n, y \setminus n, z \setminus n) \upharpoonright n.$$

In all other cases let $s_{\beta,\gamma,\delta}(N, M) = \ast$, i.e. undefined.
Let $\pi_M : M \to \tilde{M}$ be the transitive collapse. Let $\alpha_M = \pi_M(\omega_1)$, $\beta_M = \pi_M(\beta)$, $\gamma_M = \pi_M(\gamma)$ and $\delta_M = \tilde{M} = ot(M)$. Each of these is a countable limit ordinal.

Let

- $ht_{\alpha_M}(\alpha_N) = |C_{\alpha_M} \cap \alpha_N| = n(N, M) = n$
- $x = \{\pi_M(\xi) \cap \beta_M : \xi \in N \cap \beta\}$
- $y = \{\pi_M(\xi) \cap \gamma_M : \xi \in N \cap \gamma\}$
- $x = \{\pi_M(\xi) \cap \delta_M : \xi \in N \cap \delta\}$

If $osc(x \setminus n, y \setminus n, z \setminus n)$ is a sequence of length $\geq n$ let

$$s_{\beta,\gamma,\delta}(N, M) = osc(x \setminus n, y \setminus n, z \setminus n) \upharpoonright n.$$

In all other cases let $s_{\beta,\gamma,\delta}(N, M) = \star$, i.e. undefined.
Let $\pi_M : M \to \tilde{M}$ be the transitive collapse. Let $\alpha_M = \pi_M(\omega_1)$, $\beta_M = \pi_M(\beta)$, $\gamma_M = \pi_M(\gamma)$ and $\delta_M = \tilde{M} = ot(M)$. Each of these is a countable limit ordinal.

Let

- $ht_{\alpha_M}(\alpha_N) = |C_{\alpha_M} \cap \alpha_N| = n(N, M) = n$
- $x = \{\pi_M(\xi) \cap \beta_M : \xi \in N \cap \beta\}$
- $y = \{\pi_M(\xi) \cap \gamma_M : \xi \in N \cap \gamma\}$
- $z = \{\pi_M(\xi) \cap \delta_M : \xi \in N \cap \delta\}$

If $osc(x \setminus n, y \setminus n, z \setminus n)$ is a sequence of length $\geq n$ let

$$s_{\beta, \gamma, \delta}(N, M) = osc(x \setminus n, y \setminus n, z \setminus n) \upharpoonright n.$$

In all other cases let $s_{\beta, \gamma, \delta}(N, M) = \ast$, i.e. undefined.
Let $\pi_M : M \rightarrow \tilde{M}$ be the transitive collapse. Let $\alpha_M = \pi_M(\omega_1)$, $\beta_M = \pi_M(\beta)$, $\gamma_M = \pi_M(\gamma)$ and $\delta_M = \tilde{M} = ot(M)$. Each of these is a countable limit ordinal.

Let

- $ht_{\alpha_M}(\alpha_N) = |C_{\alpha_M} \cap \alpha_N| = n(N, M) = n$
- $x = \{\pi_M(\xi) \cap \beta_M : \xi \in N \cap \beta\}$
- $y = \{\pi_M(\xi) \cap \gamma_M : \xi \in N \cap \gamma\}$
- $x = \{\pi_M(\xi) \cap \delta_M : \xi \in N \cap \delta\}$

If $osc(x \setminus n, y \setminus n, z \setminus n)$ is a sequence of length $\geq n$ let

$$s_{\beta, \gamma, \delta}(N, M) = osc(x \setminus n, y \setminus n, z \setminus n) \upharpoonright n.$$

In all other cases let $s_{\beta, \gamma, \delta}(N, M) = \ast$, i.e. undefined.
The coding

$x = \{1, 3, 4, 5, 8, 9, 10\}$
Definition

Suppose $\omega_1 < \beta < \gamma < \delta < \omega_2$ and β, γ and δ are of cofinality ω_1. We say that the triple (β, γ, δ) codes a real r if there is a continuous increasing sequence of countable sets $(N_\nu : \nu < \omega_1)$ whose union is δ such that for every countable limit ordinal ν there is $\nu_0 < \nu$ such that

$$r = \bigcup_{\nu_0 < \xi < \nu} s_{\beta \gamma \delta}(N_\xi, N_\nu).$$
The coding

Definition

Suppose $\omega_1 < \beta < \gamma < \delta < \omega_2$ and β, γ and δ are of cofinality ω_1. We say that the triple (β, γ, δ) **codes** a real r if

there is a continuous increasing sequence of countable sets $(N_\nu : \nu < \omega_1)$ whose union is δ such that for every countable limit ordinal ν there is $\nu_0 < \nu$ such that

$$ r = \bigcup_{\nu_0 < \xi < \nu} s_{\beta \gamma \delta}(N_\xi, N_\nu). $$
Definition

Suppose $\omega_1 < \beta < \gamma < \delta < \omega_2$ and β, γ and δ are of cofinality ω_1. We say that the triple (β, γ, δ) codes a real r if

there is a continuous increasing sequence of countable sets $(N_\nu : \nu < \omega_1)$ whose union is δ such that for every countable limit ordinal ν there is $\nu_0 < \nu$ such that

$$r = \bigcup_{\nu_0 < \xi < \nu} s_{\beta \gamma \delta}(N_\xi, N_\nu).$$
The point is that any such triple of ordinals \((\beta, \gamma, \delta)\) can code at most one real.

Why?

Suppose \((N_\nu : \nu < \omega_1)\) and \((N'_\nu : \nu < \omega_1)\) are two continuous increasing sequences of countable sets with union \(\delta\) witnessing that \((\beta, \gamma, \delta)\) codes \(r\) and \(r'\) respectively. Then there is a club \(D\) in \(\omega_1\) such that \(N_\nu = N'_\nu\), for all \(\nu \in D\).

Let \(\nu\) be a limit point of \(D\). Then by the definition of the coding there is \(\nu_0 < \nu\) such that

\[
 r = \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta\gamma\delta}(N_\xi, N_\nu) = \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta\gamma\delta}(N'_\xi, N'_\nu) = r'.
\]
The coding

The point is that any such triple of ordinals \((\beta, \gamma, \delta)\) can code at most one real.

Why?

Suppose \((N_\nu : \nu < \omega_1)\) and \((N'_\nu : \nu < \omega_1)\) are two continuous increasing sequences of countable sets with union \(\delta\) witnessing that \((\beta, \gamma, \delta)\) codes \(r\) and \(r'\) respectively. Then there is a club \(D\) in \(\omega_1\) such that \(N_\nu = N'_\nu\), for all \(\nu \in D\).

Let \(\nu\) be a limit point of \(D\). Then by the definition of the coding there is \(\nu_0 < \nu\) such that

\[
 r = \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta \gamma \delta}(N_\xi, N_\nu) = \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta \gamma \delta}(N'_\xi, N'_\nu) = r'.
\]
The point is that any such triple of ordinals \((\beta, \gamma, \delta)\) can code at most one real.

Why?

Suppose \((N_\nu : \nu < \omega_1)\) and \((N'_\nu : \nu < \omega_1)\) are two continuous increasing sequences of countable sets with union \(\delta\) witnessing that \((\beta, \gamma, \delta)\) codes \(r\) and \(r'\) respectively. Then there is a club \(D\) in \(\omega_1\) such that \(N_\nu = N'_\nu\), for all \(\nu \in D\).

Let \(\nu\) be a limit point of \(D\). Then by the definition of the coding there is \(\nu_0 < \nu\) such that

\[
\begin{align*}
r &= \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta \gamma \delta}(N_\xi, N_\nu) = \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta \gamma \delta}(N'_\xi, N'_\nu) = r'.
\end{align*}
\]
The point is that any such triple of ordinals \((\beta, \gamma, \delta)\) can code at most one real.

Why?

Suppose \((N_{\nu} : \nu < \omega_1)\) and \((N'_{\nu} : \nu < \omega_1)\) are two continuous increasing sequences of countable sets with union \(\delta\) witnessing that \((\beta, \gamma, \delta)\) codes \(r\) and \(r'\) respectively. Then there is a club \(D\) in \(\omega_1\) such that \(N_{\nu} = N'_{\nu}\), for all \(\nu \in D\).

Let \(\nu\) be a limit point of \(D\). Then by the definition of the coding there is \(\nu_0 < \nu\) such that

\[
\begin{align*}
r &= \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta \gamma \delta}(N_{\xi}, N_{\nu}) = \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta \gamma \delta}(N'_{\xi}, N'_{\nu}) = r'.
\end{align*}
\]
The point is that any such triple of ordinals \((\beta, \gamma, \delta)\) can code at most one real.

Why?

Suppose \((N_\nu : \nu < \omega_1)\) and \((N'_\nu : \nu < \omega_1)\) are two continuous increasing sequences of countable sets with union \(\delta\) witnessing that \((\beta, \gamma, \delta)\) codes \(r\) and \(r'\) respectively. Then there is a club \(D\) in \(\omega_1\) such that \(N_\nu = N'_\nu\), for all \(\nu \in D\).

Let \(\nu\) be a limit point of \(D\). Then by the definition of the coding there is \(\nu_0 < \nu\) such that

\[
\begin{align*}
 r &= \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta \gamma \delta}(N_\xi, N_\nu) = \\
 r' &= \bigcup_{\xi \in D \cap (\nu_0, \nu)} s_{\beta \gamma \delta}(N'_\xi, N'_\nu).
\end{align*}
\]
Let r be a given real. Use MRP to show r is coded by some triple of ordinals. Define an open stationary set mapping Σ_r on the set of all countable elementary submodels of H_{\aleph_4} containing \vec{C}. For $M \in \text{dom}(\Sigma_r)$ we let $\Sigma_r(M)$ be

$$\{ N \in [M \cap \omega_4]^\omega : s_{\omega_2 \omega_3 \omega_4}(N, M \cap \omega_4) \subseteq r \}.$$

$\Sigma_r(M)$ is open in the Ellentuck topology. The difficult part is to show that $\Sigma_r(M)$ is M-stationary. This is done using Namba types games inside the transitive collapse \tilde{M} of M. Inside \tilde{M} $\pi_M(\omega_i)$, for $i = 1, \ldots, 4$ are cardinals, but from the outside they are countable ordinals, as witnessed by the C-sequence \vec{C}.
Let \(r \) be a given real. Use MRP to show \(r \) is coded by some triple of ordinals. Define an open stationary set mapping \(\Sigma_r \) on the set of all countable elementary submodels of \(H_{\aleph_4} \) containing \(\vec{C} \). For \(M \in \text{dom}(\Sigma_r) \) we let \(\Sigma_r(M) \) be

\[
\{ N \in [M \cap \omega_4]^{\omega} : s_{\omega_2 \omega_3 \omega_4}(N, M \cap \omega_4) \sqsubseteq r \}.
\]

\(\Sigma_r(M) \) is open in the Ellentuck topology.

The difficult part is to show that \(\Sigma_r(M) \) is \(M \)-stationary. This is done using Namba types games inside the transitive collapse \(\bar{M} \) of \(M \). Inside \(\bar{M} \pi_M(\omega_i) \), for \(i = 1, \ldots, 4 \) are cardinals, but from the outside they are countable ordinals, as witnessed by the \(C \)-sequence \(\vec{C} \).
The coding

Let r be a given real. Use MRP to show r is coded by some triple of ordinals. Define an open stationary set mapping Σ_r on the set of all countable elementary submodels of H_{\aleph_4} containing \vec{C}. For $M \in \text{dom}(\Sigma_r)$ we let $\Sigma_r(M)$ be

$$\{ N \in [M \cap \omega_4]^\omega : s_{\omega_2\omega_3\omega_4}(N, M \cap \omega_4) \sqsubseteq r \}.$$

$\Sigma_r(M)$ is open in the Ellentuck topology. The difficult part is to show that $\Sigma_r(M)$ is M-stationary. This is done using Namba types games inside the transitive collapse \tilde{M} of M. Inside \tilde{M} $\pi_M(\omega_i)$, for $i = 1, \ldots, 4$ are cardinals, but from the outside they are countable ordinals, as witnessed by the C-sequence \vec{C}.
Let $\langle N_\nu : \nu < \omega_1 \rangle$ be a reflecting sequence for Σ_r and let $N = \bigcup_{\nu<\omega_1} N_\nu$. Then N is an elementary submodel of H_{ω_4} of size \aleph_1.

Let $\pi_N : N \rightarrow \tilde{N}$ be the transitive collapse. Then one can show that $(\pi_N(\omega_2), \pi_N(\omega_3), \pi_N(\omega_4))$ codes r.
Let $\langle N_\nu : \nu < \omega_1 \rangle$ be a reflecting sequence for Σ_r and let $N = \bigcup_{\nu<\omega_1} N_\nu$. Then N is an elementary submodel of H_{ω_4} of size \aleph_1.

Let $\pi_N : N \to \check{N}$ be the transitive collapse. Then one can show that $(\pi_N(\omega_2), \pi_N(\omega_3), \pi_n(\omega_4))$ codes r.
The coding

Not every triple of ordinals $< \omega_2$ codes a real, but given $\omega_1 < \beta < \gamma < \delta < \omega_2$ of cofinality ω_1 we can define a family of clopen partitions

$$\alpha = \bigcup_{s \in 2^n \cup \{\ast\}} K_{s}$$

for $\alpha < \omega_1$ and apply MRP to find a continuous increasing chain of countable sets $\langle N_\nu : \nu < \omega_1 \rangle$ with union δ such that for each limit ν the "pattern of oscillation" between N_ξ and N_ν stabilizes on a tail of ξ's below ν.

So, we show that (β, γ, δ) "codes something", although not necessarily a real.
Not every triple of ordinals $< \omega_2$ codes a real, but given $\omega_1 < \beta < \gamma < \delta < \omega_2$ of cofinality ω_1 we can define a family of clopen partitions

$$\alpha = \bigcup_{s \in 2^n \cup \{\ast\}} K^s_{\alpha_s}$$

for $\alpha < \omega_1$ and apply MRP to find a continuous increasing chain of countable sets $\langle N_\nu : \nu < \omega_1 \rangle$ with union δ such that for each limit ν the "pattern of oscillation" between N_ξ and N_ν stabilizes on a tail of ξ’s below ν.

So, we show that (β, γ, δ) "codes something", although not necessarily a real.
Not every triple of ordinals $< \omega_2$ codes a real, but given $\omega_1 < \beta < \gamma < \delta < \omega_2$ of cofinality ω_1 we can define a family of clopen partitions

$$\alpha = \bigcup_{s \in 2^n \cup \{\star\}} K^s_{\alpha}$$

for $\alpha < \omega_1$ and apply MRP to find a continuous increasing chain of countable sets $\langle N_\nu : \nu < \omega_1 \rangle$ with union δ such that for each limit ν the ”pattern of oscillation” between N_ξ and N_ν stabilizes on a tail of ξ’s below ν.

So, we show that (β, γ, δ) ”codes something”, although not necessarily a real.
Not every triple of ordinals $\omega_1 < \omega_2$ codes a real, but given $\omega_1 < \beta < \gamma < \delta < \omega_2$ of cofinality ω_1 we can define a family of clopen partitions

$$\alpha = \bigcup_{s \in 2^n \cup \{\ast\}} K^s_{\alpha}$$

for $\alpha < \omega_1$ and apply MRP to find a continuous increasing chain of countable sets $\langle N_\nu : \nu < \omega_1 \rangle$ with union δ such that for each limit ν the "pattern of oscillation" between N_{ξ} and N_ν stabilizes on a tail of ξ’s below ν.

So, we show that (β, γ, δ) "codes something", although not necessarily a real.
To get a Δ_1 well ordering of the reals with parameter the C-sequence \vec{C} we proceed as follows.

We define a theory T which is sufficient to do the coding and decoding. Transitive models of this theory of size \aleph_1 are uniquely determined by their ordinals. Let M_θ be the unique transitive model of T such that $\text{ORD}^M = \theta$ (if it exists). The function

$$\theta \mapsto M_\theta$$

is Δ_1 (with parameter \vec{C}) in the theory T.

Now we define a well ordering as in the case of the constructible hierarchy.
To get a Δ_1 well ordering of the reals with parameter the C-sequence \vec{C} we proceed as follows.

We define a theory T which is sufficient to do the coding and decoding. Transitive models of this theory of size \aleph_1 are uniquely determined by their ordinals. Let M_θ be the unique transitive model of T such that $\text{ORD}^M = \theta$ (if it exists). The function

$$\theta \mapsto M_\theta$$

is Δ_1 (with parameter \vec{C}) in the theory T.

Now we define a well ordering as in the case of the constructible hierarchy.
Outline

1. Inner models of forcing axioms
2. Definable well orderings of the reals
 - The coding
 - The well ordering
3. Härtig quantifier
4. ω-sequences
5. Open problems
Applications

Recall that V_I is the set of Gödel numbers of the validities for the logic $\mathcal{L}(I)$ with the Härtig quantifier.

Theorem (Väänänen)

Assume $V = L$. Then V_I is not Σ^m_n, for any finite n, m.

So, in the context of $V = L$ the Härtig quantifier is extremely powerful. Knowing when two sets have the same cardinality is sufficient to define well orderings, cardinals and compute correctly the powerset operation, i.e. the logic $\mathcal{L}(I)$ is as powerful as 2nd order logic.
Applications

Recall that V_I is the set of Gödel numbers of the validities for the logic $\mathcal{L}(I)$ with the Hārtig quantifier.

Theorem (Väänänen)

Assume $V = L$. Then V_I is not Σ^m_n, for any finite n, m.

So, in the context of $V = L$ the Hārtig quantifier is extremely powerful. Knowing when two sets have the same cardinality is sufficient to define well orderings, cardinals and compute correctly the powerset operation, i.e. the logic $\mathcal{L}(I)$ is as powerful as 2nd order logic.
Applications

Recall that V_I is the set of Gödel numbers of the validities for the logic $\mathcal{L}(I)$ with the Härtig quantifier.

Theorem (Väänänen)

Assume $V = L$. Then V_I is not Σ^m_n, for any finite n, m.

So, in the context of $V = L$ the Härtig quantifier is extremely powerful. Knowing when two sets have the same cardinality is sufficient to define well orderings, cardinals and compute correctly the powerset operation, i.e. the logic $\mathcal{L}(I)$ is as powerful as 2nd order logic.
In the context of forcing axioms we have the following results.

Theorem (Caicedo, V.)
Assume BPFA. Then V_I is not projective.

Using the result of Steel that PFA implies $AD^{L(R)}$ and a result of Solovay saying that $AD^{L(R)}$ and the existence of $R^\#$ imply that there is a real which is ordinal definable in $L(R^\#)$ but not ordinal definable in $L(R)$ we obtain the following.

Theorem (Caicedo, V.)
Assume PFA. Then V_I is not ordinal definable in $L(R)$.
In the context of forcing axioms we have the following results.

Theorem (Caicedo, V.)

Assume BPFA. Then V_I is not projective.

Using the result of Steel that PFA implies $AD^L(R)$ and a result of Solovay saying that $AD^L(R)$ and the existence of $R^\#$ imply that there is a real which is ordinal definable in $L(R^\#)$ but not ordinal definable in $L(R)$ we obtain the following.

Theorem (Caicedo, V.)

Assume PFA. Then V_I is not ordinal definable in $L(R)$.
In the context of forcing axioms we have the following results.

Theorem (Caicedo, V.)

Assume BPFA. Then V_I is not projective.

Using the result of Steel that PFA implies $AD^L(R)$ and a result of Solovay saying that $AD^L(R)$ and the existence of $R^#$ imply that there is a real which is ordinal definable in $L(R^#)$ but not ordinal definable in $L(R)$ we obtain the following.

Theorem (Caicedo, V.)

Assume PFA. Then V_I is not ordinal definable in $L(R)$.
In the context of forcing axioms we have the following results.

Theorem (Caicedo, V.)

Assume BPFA. Then \(V_I \) is not projective.

Using the result of Steel that PFA implies \(AD^L(\mathbb{R}) \) and a result of Solovay saying that \(AD^L(\mathbb{R}) \) and the existence of \(\mathbb{R}^# \) imply that there is a real which is ordinal definable in \(L(\mathbb{R}^#) \) but not ordinal definable in \(L(\mathbb{R}) \) we obtain the following.

Theorem (Caicedo, V.)

Assume PFA. Then \(V_I \) is not ordinal definable in \(L(\mathbb{R}) \).
Outline

1. Inner models of forcing axioms
2. Definable well orderings of the reals
 - The coding
 - The well ordering
3. Härtig quantifier
4. ω-sequences
5. Open problems
Now we return to the original question.

Question

If $V \subseteq W$ are models of some strong forcing axiom and V and W have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?

This question is still open, but there are some partial results. Using ideas from his proof that PID implies SCH Viale has shown the following.
Now we return to the original question.

Question

If $V \subseteq W$ are models of some strong forcing axiom and V and W have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?

This question is still open, but there are some partial results. Using ideas from his proof that PID implies SCH Viale has shown the following.
Theorem (Viale)

Assume $V \subseteq W$, the P-ideal dichotomy holds in W and V and W have the same reals and cardinals. Let κ be the least such that $(\kappa^\omega)^W \notin V$. Then κ is not a regular cardinal in V.
Theorem (Viale)

Assume $V \subseteq W$ are models with the same cardinals and reals. Assume that W satisfies PID and κ is the least such that $(\kappa^\omega)^W \not\subseteq V$ (so $\text{cof}(\kappa)^V = \omega$).

1. For every W-regular $\lambda < \kappa$ there is a stationary set in κ^+ consisting of ordinals of V cofinality λ which is not stationary in W.

2. If $\kappa = \aleph_\omega^V$ then κ is V-Jónsson, i.e. any algebra on κ which is in V has a proper subalgebra of the same size in W. So, if V and W have the same bounded subsets of κ then κ is Jónsson in W.
Theorem (Viale)

Assume $V \subseteq W$ are models with the same cardinals and reals. Assume that W satisfies PID and κ is the least such that $(\kappa^\omega)^W \not\subseteq V$ (so $\text{cof}(\kappa)^V = \omega$).

1. For every W-regular $\lambda < \kappa$ there is a stationary set in κ^+ consisting of ordinals of V cofinality λ which is not stationary in W.

2. If $\kappa = \aleph_\omega^V$ then κ is V-Jónsson, i.e. any algebra on κ which is in V has a proper subalgebra of the same size in W. So, if V and W have the same bounded subsets of κ then κ is Jónsson in W.
Theorem (Viale)

Assume \(V \subseteq W \) are models with the same cardinals and reals. Assume that \(W \) satisfies PID and \(\kappa \) is the least such that \((\kappa^\omega)^W \not\in V\) (so \(\text{cof}(\kappa)^V = \omega \)).

1. For every \(W \)-regular \(\lambda < \kappa \) there is a stationary set in \(\kappa^+ \) consisting of ordinals of \(V \) cofinality \(\lambda \) which is not stationary in \(W \).

2. If \(\kappa = \aleph_\omega^V \) then \(\kappa \) is \(V \)-Jónsson, i.e. any algebra on \(\kappa \) which is in \(V \) has a proper subalgebra of the same size in \(W \). So, if \(V \) and \(W \) have the same bounded subsets of \(\kappa \) then \(\kappa \) is Jónsson in \(W \).
Outline

1. Inner models of forcing axioms
2. Definable well orderings of the reals
 - The coding
 - The well ordering
3. Härting quantifier
4. ω-sequences
5. Open problems
Open Problems

- Assume If $V \subseteq W$, both V and W are models of PFA and have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?
- Does PFA or MM imply the existence of a well-ordering of the reals which is definable without parameters? Paul Larson has shown that the existence of such a well-ordering is consistent with MM.
- Does the P-ideal dichotomy imply $2^{\aleph_0} \leq \aleph_2$? It is known that most standard forcing for adding a real destroy the P-ideal dichotomy.
Open Problems

Assume If $V \subseteq W$, both V and W are models of PFA and have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?

Does PFA or MM imply the existence of a well-ordering of the reals which is definable without parameters? Paul Larson has shown that the existence of such a well-ordering is consistent with MM.

Does the P-ideal dichotomy imply $2^{\aleph_0} \leq \aleph_2$? It is known that most standard forcing for adding a real destroy the P-ideal dichotomy.
Open Problems

- Assume if $V \subseteq W$, both V and W are models of PFA and have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?

- Does PFA or MM imply the existence of a well-ordering of the reals which is definable without parameters? Paul Larson has shown that the existence of such a well-ordering is consistent with MM.

- Does the P-ideal dichotomy imply $2^{\aleph_0} \leq \aleph_2$? It is known that most standard forcing for adding a real destroy the P-ideal dichotomy.
Assume If $V \subseteq W$, both V and W are models of PFA and have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?

Does PFA or MM imply the existence of a well-ordering of the reals which is definable without parameters? Paul Larson has shown that the existence of such a well-ordering is consistent with MM.

Does the P-ideal dichotomy imply $2^{\aleph_0} \leq \aleph_2$? It is known that most standard forcing for adding a real destroy the P-ideal dichotomy.
Open Problems

Assume if $V \subseteq W$, both V and W are models of PFA and have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?

Does PFA or MM imply the existence of a well-ordering of the reals which is definable without parameters? Paul Larson has shown that the existence of such a well-ordering is consistent with MM.

Does the P-ideal dichotomy imply $2^{\aleph_0} \leq \aleph_2$?

It is known that most standard forcing for adding a real destroy the P-ideal dichotomy.
Open Problems

Assume If $V \subseteq W$, both V and W are models of PFA and have the same cardinals. Is $\text{ORD}^{\omega_1} \cap V = \text{ORD}^{\omega_1} \cap W$?

Does PFA or MM imply the existence of a well-ordering of the reals which is definable without parameters? Paul Larson has shown that the existence of such a well-ordering is consistent with MM.

Does the P-ideal dichotomy imply $2^{\aleph_0} \leq \aleph_2$? It is known that most standard forcing for adding a real destroy the P-ideal dichotomy.