Historical survey of Busy Beavers
Contents
Turing machines with 2 states and 2 symbols
Turing machines with 2 states and 3 symbols
Turing machines with 2 states and 4 symbols
Turing machines with 2 states and 5 symbols
Relations between functions S and Sigma
Variants of busy beavers:
1 - Busy beavers defined by 4-tuplesReferences
2 - Busy beavers whose head can stand still
3 - Two-dimensional busy beavers
Last update: September 2016
See also an introduction to Turing machines and busy beavers for the definitions,
the current results on the busy beaver competitions,
and some advanced topics.
Chronological summary
1963 | Rado, Lin | S(2,2) = 6, Sigma(2,2) = 4 S(3,2) = 21, Sigma(3,2) = 6 |
1964 | Brady | (4,2)-TM: s = 107, sigma = 13 |
1964 | Green | (5,2)-TM: sigma = 17 (6,2)-TM: sigma = 35 (7,2)-TM: sigma = 22961 |
1972 | Lynn | (5,2)-TM: s = 435, sigma = 22 (6,2)-TM: s = 522, sigma = 42 |
1974 | Lynn | (5,2)-TM: s = 7,707, sigma = 112 |
1974 | Brady | S(4,2) = 107, Sigma(4,2) = 13 |
1983 | Brady | (6,2)-TM: s = 13,488, sigma = 117 |
January 1983 | Schult | (5,2)-TM: s = 134,467, sigma = 501 (6,2)-TM: sigma = 2,075 |
December 1984 | Uhing | (5,2)-TM: s = 2,133,492, sigma = 1,915 |
February 1986 | Uhing | (5,2)-TM: s = 2,358,064 |
1988 | Brady | (2,3)-TM: s = 38, sigma = 9 (2,4)-TM: s = 7,195, sigma = 90 |
February 1990 | Marxen, Buntrock | (5,2)-TM: s = 47,176,870, sigma = 4,098 (6,2)-TM: s = 13,122,572,797, sigma = 136,612 |
September 1997 | Marxen, Buntrock | (6,2)-TM: s = 8,690,333,381,690,951, sigma = 95,524,079 |
August 2000 | Marxen, Buntrock | (6,2)-TM: s > 5.3 × 10^42, sigma > 2.5 × 10^21 |
October 2000 | Marxen, Buntrock | (6,2)-TM: s > 6.1 × 10^925, sigma > 6.4 × 10^462 |
March 2001 | Marxen, Buntrock | (6,2)-TM: s > 3.0 × 10^1730, sigma > 1.2 × 10^865 |
October 2004 | Michel | (3,3)-TM: s = 40,737, sigma = 208 |
November 2004 | Brady | (3,3)-TM: s = 29,403,894, sigma = 5,600 |
December 2004 | Brady | (3,3)-TM: s = 92,649,163, sigma = 13,949 |
February 2005 | T. and S. Ligocki | (2,4)-TM: s = 3,932,964, sigma = 2,050 (2,5)-TM: s = 16,268,767, sigma = 4,099 (2,6)-TM: s = 98,364,599, sigma = 10,574 |
April 2005 | T. and S. Ligocki | (4,3)-TM: s = 250,096,776, sigma = 15,008 (3,4)-TM: s = 262,759,288, sigma = 17,323 (2,5)-TM: s = 148,304,214, sigma = 11,120 (2,6)-TM: s = 493,600,387, sigma = 15,828 |
July 2005 | Souris | (3,3)-TM: s = 544,884,219, sigma = 36,089 |
August 2005 | Lafitte, Papazian | (3,3)-TM: s = 4,939,345,068, sigma = 107,900 (2,5)-TM: s = 8,619,024,596, sigma = 90,604 |
September 2005 | Lafitte, Papazian | (3,3)-TM: s = 987,522,842,126, sigma = 1,525,688 (2,5)-TM: sigma = 97,104 |
October 2005 | Lafitte, Papazian | (2,5)-TM: s = 233,431,192,481, sigma = 458,357 (2,5)-TM: s = 912,594,733,606, sigma = 1,957,771 |
December 2005 | Lafitte, Papazian | (2,5)-TM: s = 924,180,005,181 |
April 2006 | Lafitte, Papazian | (3,3)-TM: s = 4,144,465,135,614, sigma = 2,950,149 |
May 2006 | Lafitte, Papazian | (2,5)-TM: s = 3,793,261,759,791, sigma = 2,576,467 |
June 2006 | Lafitte, Papazian | (2,5)-TM: s = 14,103,258,269,249, sigma = 4,848,239 |
July 2006 | Lafitte, Papazian | (2,5)-TM: s = 26,375,397,569,930 |
August 2006 | T. and S. Ligocki | (3,3)-TM: s = 4,345,166,620,336,565, sigma = 95,524,079 (2,5)-TM: s > 7.0 × 10^21, sigma = 172,312,766,455 |
June 2007 | Lafitte, Papazian | S(2,3) = 38, Sigma(2,3) = 9 |
September 2007 | T. and S. Ligocki | (3,4)-TM: s > 5.7 × 10^52, sigma > 2.4 × 10^26 (2,6)-TM: s > 2.3 × 10^54, sigma > 1.9 × 10^27 |
October 2007 | T. and S. Ligocki | (4,3)-TM: s > 1.5 × 10^1426, sigma > 1.1 × 10^713 (3,4)-TM: s > 4.3 × 10^281, sigma > 6.0 × 10^140 (3,4)-TM: s > 7.6 × 10^868, sigma > 4.6 × 10^434 (3,4)-TM: s > 3.1 × 10^1256, sigma > 2.1 × 10^628 (2,5)-TM: s > 5.2 × 10^61, sigma > 9.3 × 10^30 (2,5)-TM: s > 1.6 × 10^211, sigma > 5.2 × 10^105 |
November 2007 | T. and S. Ligocki | (6,2)-TM: s > 8.9 × 10^1762, sigma > 2.5 × 10^881 (3,3)-TM: s = 119,112,334,170,342,540, sigma = 374,676,383 (4,3)-TM: s > 7.7 × 10^1618, sigma > 1.6 × 10^809 (4,3)-TM: s > 3.7 × 10^1973, sigma > 8.0 × 10^986 (4,3)-TM: s > 3.9 × 10^7721, sigma > 4.0 × 10^3860 (4,3)-TM: s > 3.9 × 10^9122, sigma > 2.5 × 10^4561 (3,4)-TM: s > 8.4 × 10^2601, sigma > 1.7 × 10^1301 (3,4)-TM: s > 3.4 × 10^4710, sigma > 1.4 × 10^2355 (3,4)-TM: s > 5.9 × 10^4744, sigma > 2.2 × 10^2372 (2,5)-TM: s > 1.9 × 10^704, sigma > 1.7 × 10^352 (2,6)-TM: s > 4.9 × 10^1643, sigma > 8.6 × 10^821 (2,6)-TM: s > 2.5 × 10^9863, sigma > 6.9 × 10^4931 |
December 2007 | T. and S. Ligocki | (6,2)-TM: s > 2.5 × 10^2879, sigma > 4.6 × 10^1439 (4,3)-TM: s > 7.9 × 10^9863, sigma > 8.9 × 10^4931 (4,3)-TM: s > 5.3 × 10^12068, sigma > 4.2 × 10^6034 (3,4)-TM: s > 5.2 × 10^13036, sigma > 3.7 × 10^6518 |
January 2008 | T. and S. Ligocki | (4,3)-TM: s > 1.0 × 10^14072, sigma > 1.3 × 10^7036 (2,6)-TM: s > 2.4 × 10^9866, sigma > 1.9 × 10^4933 |
May 2010 | Kropitz | (6,2)-TM: s > 3.8 × 10^21132, sigma > 3.1 × 10^10566 |
June 2010 | Kropitz | (6,2)-TM: s > 7.4 × 10^36534, sigma > 3.5 × 10^18267 |
March 2014 | "Wythagoras" | (7,2)-TM: s > sigma > 10^(10^(10^(10^18705352))) |
Turing machines with 2 states and 2 symbols
A0 | A1 | B0 | B1 | sigma(M) | s(M) |
1RB | 1LB | 1LA | 1RH | 4 | 6 |
1RB | 1RH | 1LB | 1LA | 3 | 6 |
1RB | 0LB | 1LA | 1RH | 3 | 6 |
Turing machines with 3 states and 2 symbols
A0 | A1 | B0 | B1 | C0 | C1 | sigma(M) | s(M) |
1RB | 1RH | 1LB | 0RC | 1LC | 1LA | 5 | 21 |
1RB | 1RH | 0LC | 0RC | 1LC | 1LA | 5 | 20 |
1RB | 1LA | 0RC | 1RH | 1LC | 0LA | 5 | 20 |
0RB | 1RH | 0LC | 1RA | 1RB | 1LC | 4 | 17 |
0RB | 1LC | 1LA | 1RB | 1LB | 1RH | 5 | 16 |
1RB | 1RH | 0RC | 1RB | 1LC | 1LA | 6 | 14 |
1RB | 1RC | 1LC | 1RH | 1RA | 0LB | 6 | 13 |
1RB | 1LC | 1LA | 1RB | 1LB | 1RH | 6 | 13 |
0RB | 1LC | 1RC | 1RB | 1LA | 1RH | 5 | 13 |
1RB | 1RA | 1LC | 1RH | 1RA | 1LB | 6 | 12 |
1RB | 1LC | 1RC | 1RH | 1LA | 0LB | 6 | 11 |
Turing machines with 4 states and 2 symbols
A0 | A1 | B0 | B1 | C0 | C1 | D0 | D1 | sigma(M) | s(M) |
1RB | 1LB | 1LA | 0LC | 1RH | 1LD | 1RD | 0RA | 13 | 107 |
1RB | 1LD | 1LC | 0RB | 1RA | 1LA | 1RH | 0LC | 9 | 97 |
1RB | 0RC | 1LA | 1RA | 1RH | 1RD | 1LD | 0LB | 13 | 96 |
1RB | 1LB | 0LC | 0RD | 1RH | 1LA | 1RA | 0LA | 6 | 96 |
1RB | 1LD | 0LC | 0RC | 1LC | 1LA | 1RH | 0LA | 11 | 84 |
1RB | 1RH | 1LC | 0RD | 1LA | 1LB | 0LC | 1RD | 8 | 83 |
1RB | 0RD | 1LC | 0LA | 1RA | 1LB | 1RH | 0RC | 12 | 78 |
Turing machines with 5 states and 2 symbols
A0 | A1 | B0 | B1 | C0 | C1 | D0 | D1 | E0 | E1 | sigma(M) | s(M) |
1RB | 1LC | 1RC | 1RB | 1RD | 0LE | 1LA | 1LD | 1RH | 0LA | 4098 | 47,176,870 |
1RB | 0LD | 1LC | 1RD | 1LA | 1LC | 1RH | 1RE | 1RA | 0RB | 4097 | 23,554,764 |
1RB | 1RA | 0LC | 0RC | 1RH | 1RD | 1LE | 0LA | 1LA | 1LE | 4096 | 11,821,190* |
1RB | 1RA | 1LC | 0RD | 1LA | 1LC | 1RH | 1RE | 1LC | 0LA | 4096 | 11,815,076* |
1RB | 1RA | 0LC | 0RC | 1RH | 1RD | 1LE | 1RB | 1LA | 1LE | 4096 | 11,811,010* |
1RB | 1RA | 1LC | 0RD | 1LA | 1LC | 1RH | 1RE | 0LE | 1RB | 4096 | 11,804,910 |
1RB | 1RA | 1LC | 0RD | 1LA | 1LC | 1RH | 1RE | 1LC | 1RB | 4096 | 11,804,896 |
1RB | 1RA | 1LC | 1LB | 1RA | 1LD | 1RA | 1LE | 1RH | 0LC | 4098 | 11,798,826 |
1RB | 1RA | 1LC | 1RD | 1LA | 1LC | 1RH | 0RE | 1LC | 1RB | 4097 | 11,798,796 |
1RB | 1RA | 1LC | 1RD | 1LA | 1LC | 1RH | 1RE | 0LE | 0RB | 4097 | 11,792,724* |
1RB | 1RA | 1LC | 1RD | 1LA | 1LC | 1RH | 1RE | 1RA | 0RB | 4097 | 11,792,682* |
1RB | 1RH | 1LC | 1RC | 0RE | 0LD | 1LC | 0LB | 1RD | 1RA | 1471 | 2,358,064 |
1RB | 1LC | 0LA | 0LD | 1LA | 1RH | 1LB | 1RE | 0RD | 0RB | 1915 | 2,133,492 |
1RB | 0LC | 1RC | 1RD | 1LA | 0RB | 0RE | 1RH | 1LC | 1RA | 501 | 134,467 |
(Among the first eleven machines, the five starred ones are from Norbert Bátfai. The six machines without star were discovered by Marxen and Buntrock, the next two ones were by Uhing, and the last one was by Schult. Heiner Marxen says there are no other sigma values within the sigma range above).
Turing machines with 6 states and 2 symbols
A0 | A1 | B0 | B1 | C0 | C1 | D0 | D1 | E0 | E1 | F0 | F1 | sigma(M) > | s(M) > |
1RB | 1LE | 1RC | 1RF | 1LD | 0RB | 1RE | 0LC | 1LA | 0RD | 1RH | 1RC | 3.5 × 10^18267 | 7.4 × 10^36534 |
1RB | 0LD | 1RC | 0RF | 1LC | 1LA | 0LE | 1RH | 1LA | 0RB | 0RC | 0RE | 3.1 × 10^10566 | 3.8 × 10^21132 |
1RB | 0LE | 1LC | 0RA | 1LD | 0RC | 1LE | 0LF | 1LA | 1LC | 1LE | 1RH | 4.6 × 10^1439 | 2.5 × 10^2879 |
1RB | 0RF | 0LB | 1LC | 1LD | 0RC | 1LE | 1RH | 1LF | 0LD | 1RA | 0LE | 2.5 × 10^881 | 8.9 × 10^1762 |
1RB | 0LF | 0RC | 0RD | 1LD | 1RE | 0LE | 0LD | 0RA | 1RC | 1LA | 1RH | 1.2 × 10^865 | 3.0 × 10^1730 |
1RB | 0LB | 0RC | 1LB | 1RD | 0LA | 1LE | 1LF | 1LA | 0LD | 1RH | 1LE | 6.4 × 10^462 | 6.1 × 10^925 |
1RB | 0LC | 1LA | 1RC | 1RA | 0LD | 1LE | 1LC | 1RF | 1RH | 1RA | 1RE | 1.4 × 10^60 | 6.1 × 10^119 |
1RB | 0LB | 1LC | 0RE | 1RE | 0LD | 1LA | 1LA | 0RA | 0RF | 1RE | 1RH | 6.9 × 10^49 | 5.5 × 10^99 |
1RB | 0LC | 1LA | 1LD | 1RD | 0RC | 0LB | 0RE | 1RC | 1LF | 1LE | 1RH | 1.1 × 10^49 | 3.2 × 10^98 |
1RB | 0LC | 1LA | 1RD | 1RA | 0LE | 1RA | 0RB | 1LF | 1LC | 1RD | 1RH | 6.7 × 10^47 | 2.0 × 10^95 |
1RB | 0LC | 1LA | 1RD | 0LB | 0LE | 1RA | 0RB | 1LF | 1LC | 1RD | 1RH | 6.7 × 10^47 | 2.0 × 10^95 |
1RB | 0RC | 0LA | 0RD | 1RD | 1RH | 1LE | 0LD | 1RF | 1LB | 1RA | 1RE | 2.5 × 10^21 | 5.3 × 10^42 |
Turing machines with 7 states and 2 symbols
A0 | A1 | B0 | B1 | C0 | C1 | D0 | D1 | E0 | E1 | F0 | F1 | G0 | G1 |
1RB | 1RC | 0LG | 1LD | 1RB | 1LF | 1LE | 1RH | 1LF | 1RG | 0LD | 1LB | 0RF |
Turing machines with 2 states and 3 symbols
A0 | A1 | A2 | B0 | B1 | B2 | sigma(M) | s(M) |
1RB | 2LB | 1RH | 2LA | 2RB | 1LB | 9 | 38 |
1RB | 0LB | 1RH | 2LA | 1RB | 1RA | 8 | 29 |
0RB | 2LB | 1RH | 1LA | 1RB | 1RA | 6 | 27 |
1RB | 2LA | 1RH | 1LB | 1LA | 0RA | 6 | 26 |
1RB | 1LA | 1LB | 0LA | 2RA | 1RH | 6 | 26 |
1RB | 1LB | 1RH | 2LA | 2RB | 1LB | 7 | 24 |
Turing machines with 3 states and 3 symbols
A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 | C2 | sigma(M) | s(M) |
1RB | 2LA | 1LC | 0LA | 2RB | 1LB | 1RH | 1RA | 1RC | 374,676,383 | 119,112,334,170,342,540 |
1RB | 2RC | 1LA | 2LA | 1RB | 1RH | 2RB | 2RA | 1LC | 95,524,079 | 4,345,166,620,336,565 |
1RB | 1RH | 2LC | 1LC | 2RB | 1LB | 1LA | 2RC | 2LA | 2,950,149 | 4,144,465,135,614 |
1RB | 2LA | 1RA | 1RC | 2RB | 0RC | 1LA | 1RH | 1LA | 1,525,688 | 987,522,842,126 |
1RB | 1RH | 2RB | 1LC | 0LB | 1RA | 1RA | 2LC | 1RC | 107,900 | 4,939,345,068 |
1RB | 2LA | 1RA | 1LB | 1LA | 2RC | 1RH | 1LC | 2RB | 43,925 | 1,808,669,066 |
1RB | 2LA | 1RA | 1LC | 1LA | 2RC | 1RH | 1LA | 2RB | 43,925 | 1,808,669,046 |
1RB | 1LB | 2LA | 1LA | 1RC | 1RH | 0LA | 2RC | 1LC | 32,213 | 544,884,219 |
1RB | 0LA | 1LA | 2RC | 1RC | 1RH | 2LC | 1RA | 0RC | 20,240 | 408,114,977 |
1RB | 2RA | 2RC | 1LC | 1RH | 1LA | 1RA | 2LB | 1LC | 36,089 | 310,341,163 |
1RB | 1RH | 2LC | 1LC | 2RB | 1LB | 1LA | 0RB | 2LA | 13,949 | 92,649,163 |
1RB | 2LA | 1LA | 2LA | 1RC | 2RB | 1RH | 0LC | 0RA | 7,205 | 51,525,774 |
1RB | 2RA | 1LA | 2LA | 2LB | 2RC | 1RH | 2RB | 1RB | 12,290 | 47,287,015 |
1RB | 2RA | 1LA | 2LC | 0RC | 1RB | 1RH | 2LA | 1RB | 5,600 | 29,403,894 |
(The first two machines were discovered by Terry and Shawn Ligocki, the next five ones were by Lafitte and Papazian, the next three ones were by Souris, and the last four ones were by Brady).
Turing machines with 4 states and 3 symbols
A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 | C2 | D0 | D1 | D2 | sigma(M) | s(M) |
1RB | 1RH | 2RC | 2LC | 2RD | 0LC | 1RA | 2RB | 0LB | 1LB | 0LD | 2RC | > 1.3 × 10^7036 | > 1.0 × 10^14072 |
1RB | 0LB | 1RD | 2RC | 2LA | 0LA | 1LB | 0LA | 0LA | 1RA | 0RA | 1RH | > 4.2 × 10^6034 | > 5.3 × 10^12068 |
1RB | 1LD | 1RH | 1RC | 2LB | 2LD | 1LC | 2RA | 0RD | 1RC | 1LA | 0LA | > 8.9 × 10^4931 | > 7.9 × 10^9863 |
1RB | 2LD | 1RH | 2LC | 2RC | 2RB | 1LD | 0RC | 1RC | 2LA | 2LD | 0LB | > 2.5 × 10^4561 | > 3.9 × 10^9122 |
1RB | 1LA | 1RD | 2LC | 0RA | 1LB | 2LA | 0LB | 0RD | 2RC | 1RH | 0LC | > 4.0 × 10^3860 | > 3.9 × 10^7721 |
1RB | 1RA | 0LB | 2LC | 1LB | 1RC | 0RD | 2LC | 1RA | 2RA | 1RH | 1RC | > 8.0 × 10^986 | > 3.7 × 10^1973 |
1RB | 2RC | 1RA | 2LC | 1LA | 1LB | 2LD | 0LB | 0RC | 0RD | 1RH | 0RA | > 1.6 × 10^809 | > 7.7 × 10^1618 |
1RB | 0LC | 1RH | 2LC | 1RD | 0LB | 2LA | 1LC | 1LA | 1RB | 2LD | 2RA | > 1.1 × 10^713 | > 1.5 × 10^1426 |
0RB | 1LD | 1RH | 1LA | 1RC | 1RD | 1RB | 2LC | 1RC | 1LA | 1LC | 2RB | 15,008 | 250,096,776 |
Turing machines with 2 states and 4 symbols
A0 | A1 | A2 | A3 | B0 | B1 | B2 | B3 | sigma(M) | s(M) |
1RB | 2LA | 1RA | 1RA | 1LB | 1LA | 3RB | 1RH | 2,050 | 3,932,964 |
1RB | 3LA | 1LA | 1RA | 2LA | 1RH | 3RA | 3RB | 90 | 7,195 |
1RB | 3LA | 1LA | 1RA | 2LA | 1RH | 3LA | 3RB | 84 | 6,445 |
1RB | 3LA | 1LA | 1RA | 2LA | 1RH | 2RA | 3RB | 84 | 6,445 |
1RB | 2RB | 3LA | 2RA | 1LA | 3RB | 1RH | 1LB | 60 | 2,351 |
Turing machines with 3 states and 4 symbols
A0 | A1 | A2 | A3 | B0 | B1 | B2 | B3 | C0 | C1 | C2 | C3 | sigma(M) | s(M) |
1RB | 1RA | 2LB | 3LA | 2LA | 0LB | 1LC | 1LB | 3RB | 3RC | 1RH | 1LC | > 3.7 × 10^6518 | > 5.2 × 10^13036 |
1RB | 1RA | 1LB | 1RC | 2LA | 0LB | 3LC | 1RH | 1LB | 0RC | 2RA | 2RC | > 2.2 × 10^2372 | > 5.9 × 10^4744 |
1RB | 2LB | 2RA | 1LA | 2LA | 1RC | 0LB | 2RA | 1RB | 3LC | 1LA | 1RH | > 1.4 × 10^2355 | > 3.4 × 10^4710 |
1RB | 1LA | 3LA | 3RC | 2LC | 2LB | 1RB | 1RA | 2LA | 3LC | 1RH | 1LB | > 1.7 × 10^1301 | > 8.4 × 10^2601 |
1RB | 3LA | 3RC | 1RA | 2RC | 1LA | 1RH | 2RB | 1LC | 1RB | 1LB | 2RA | > 2.1 × 10^628 | > 3.1 × 10^1256 |
1RB | 0RB | 3LC | 1RC | 0RC | 1RH | 2RC | 3RC | 1LB | 2LA | 3LA | 2RB | > 4.6 × 10^434 | > 7.6 × 10^868 |
1RB | 3RB | 2LC | 3LA | 0RC | 1RH | 2RC | 1LB | 1LB | 2LA | 3RC | 2LC | > 6.0 × 10^140 | > 4.3 × 10^281 |
1RB | 1LA | 1LB | 1RA | 0LA | 2RB | 2LC | 1RH | 3RB | 2LB | 1RC | 0RC | > 2.4 × 10^26 | > 5.7 × 10^52 |
1RB | 3LC | 0RA | 0LC | 2LC | 3RC | 0RC | 1LB | 1RA | 0LB | 0RB | 1RH | 17,323 | 262,759,288 |
Turing machines with 2 states and 5 symbols
A0 | A1 | A2 | A3 | A4 | B0 | B1 | B2 | B3 | B4 | sigma(M) | s(M) |
1RB | 2LA | 1RA | 2LB | 2LA | 0LA | 2RB | 3RB | 4RA | 1RH | > 1.7 × 10^352 | > 1.9 × 10^704 |
1RB | 2LA | 4RA | 2LB | 2LA | 0LA | 2RB | 3RB | 4RA | 1RH | > 5.2 × 10^105 | > 1.6 × 10^211 |
1RB | 2LA | 4RA | 2LB | 2LA | 0LA | 2RB | 3RB | 1RA | 1RH | > 5.2 × 10^105 | > 1.6 × 10^211 |
1RB | 2LA | 4RA | 1LB | 2LA | 0LA | 2RB | 3RB | 2RA | 1RH | > 9.3 × 10^30 | > 5.2 × 10^61 |
1RB | 0RB | 4RA | 2LB | 2LA | 2LA | 1LB | 3RB | 4RA | 1RH | 172,312,766,455 | 7,069,449,877,176,007,352,687 |
1RB | 3LA | 3LB | 0LB | 1RA | 2LA | 4LB | 4LA | 1RA | 1RH | 1,194,050,967 | 339,466,124,499,007,251 |
1RB | 3RB | 3RA | 1RH | 2LB | 2LA | 4RA | 4RB | 2LB | 0RA | 1,194,050,967 | 339,466,124,499,007,214 |
1RB | 1RH | 4LA | 4LB | 2RA | 2LB | 2RB | 3RB | 2RA | 0RB | 620,906,587 | 91,791,666,497,368,316 |
1RB | 3LA | 1LA | 0LB | 1RA | 2LA | 4LB | 4LA | 1RA | 1RH | 398,005,342 | 37,716,251,406,088,468 |
1RB | 2RA | 1LA | 3LA | 2RA | 2LA | 3RB | 4LA | 1LB | 1RH | 114,668,733 | 9,392,084,729,807,219 |
1RB | 2RA | 1LA | 1LB | 3LB | 2LA | 3RB | 1RH | 4RA | 1LA | 36,543,045 | 417,310,842,648,366 |
(These machines were discovered by Terry and Shawn Ligocki).
A0 | A1 | A2 | A3 | A4 | B0 | B1 | B2 | B3 | B4 | sigma(M) | s(M) |
1RB | 3LA | 1LA | 4LA | 1RA | 2LB | 2RA | 1RH | 0RA | 0RB | 143 | 26,375,397,569,930 |
1RB | 3LB | 4LB | 4LA | 2RA | 2LA | 1RH | 3RB | 4RA | 3RB | 4,848,239 | 14,103,258,269,249 |
1RB | 3RA | 4LB | 2RA | 3LA | 2LA | 1RH | 4RB | 4RB | 2LB | 2,576,467 | 3,793,261,759,791 |
1RB | 3RA | 1LA | 1LB | 3LB | 2LA | 4LB | 3RA | 2RB | 1RH | 1,137,477 | 924,180,005,181 |
1RB | 3LB | 1RH | 1LA | 1LA | 2LA | 3RB | 4LB | 4LB | 3RA | 1,957,771 | 912,594,733,606 |
1RB | 2RB | 3LA | 2RA | 3RA | 2LB | 2LA | 3LA | 4RB | 1RH | 668,420 | 469,121,946,086 |
1RB | 3RB | 3RB | 1LA | 3LB | 2LA | 3RA | 4LB | 2RA | 1RH | 458,357 | 233,431,192,481 |
1RB | 3LA | 1LB | 1RA | 3RA | 2LB | 3LA | 3RA | 4RB | 1RH | 90,604 | 8,619,024,596 |
1RB | 2RB | 3RB | 4LA | 3RA | 0LA | 4RB | 1RH | 0RB | 1LB | 97,104 | 7,543,673,517 |
1RB | 4LA | 1LA | 1RH | 2RB | 2LB | 3LA | 1LB | 2RA | 0RB | 37 | 7,021,292,621 |
1RB | 2RB | 3LA | 2RA | 3RA | 2LB | 2LA | 1LA | 4RB | 1RH | 64,665 | 4,561,535,055 |
1RB | 3LA | 4LA | 1RA | 1LA | 2LA | 1RH | 4RA | 3RB | 1RA | 11,120 | 148,304,214 |
1RB | 3LA | 4LA | 1RA | 1LA | 2LA | 1RH | 1LA | 3RB | 1RA | 3,685 | 16,268,767 |
1RB | 3RB | 2LA | 0RB | 1RH | 2LA | 4RB | 3LB | 2RB | 3RB | 4,099 | 15,754,273 |
(The first eleven machines were discovered by Lafitte and Papazian, and the last three ones were by T. and S. Ligocki).
Turing machines with 2 states and 6 symbols
A0 | A1 | A2 | A3 | A4 | A5 | B0 | B1 | B2 | B3 | B4 | B5 | sigma(M) | s(M) |
1RB | 2LA | 1RH | 5LB | 5LA | 4LB | 1LA | 4RB | 3RB | 5LB | 1LB | 4RA | > 1.9 × 10^4933 | > 2.4 × 10^9866 |
1RB | 1LB | 3RA | 4LA | 2LA | 4LB | 2LA | 2RB | 3LB | 1LA | 5RA | 1RH | > 6.9 × 10^4931 | > 2.5 × 10^9863 |
1RB | 2LB | 4RB | 1LA | 1RB | 1RH | 1LA | 3RA | 5RA | 4LB | 0RA | 4LA | > 8.6 × 10^821 | > 4.9 × 10^1643 |
1RB | 0RB | 3LA | 5LA | 1RH | 4LB | 1LA | 2RB | 3LA | 4LB | 3RB | 3RA | > 1.9 × 10^27 | > 2.3 × 10^54 |
1RB | 2LA | 1RA | 1RA | 5LB | 4LB | 1LB | 1LA | 3RB | 4LA | 1RH | 3LA | 15,828 | 493,600,387 |
1RB | 3LA | 3LA | 1RA | 1RA | 3LB | 1LB | 2LA | 2RA | 4RB | 5LB | 1RH | 10,249 | 98,364,599 |
1RB | 3LA | 4LA | 1RA | 3RB | 1RH | 2LB | 1LA | 1LB | 3RB | 5RA | 1RH | 10,574 | 94,842,383 |
Relations between functions S and Sigma
S(n) < (n+1) Sigma(5n) 2^{Sigma(5n)}.
S(n) < Sigma(20n).
S(n) < Sigma(10n).
S(n) < Sigma(8n),and that there is a constant c such that
S(n) < Sigma(3n+c).
S(n) < Sigma(3n+6),and
S(n) < (2n-1) Sigma(3n+3).
S(n) < Sigma(n + 8n/log_{2}n + c).
Variants of busy beavers
1 - Busy beavers defined by 4-tuples
(A,0) --> (1,R,B)and generally a transition is
(state, scanned symbol) --> (new written symbol, move of the head, new state)Instead of both writing a symbol and moving the head in one transition, these actions can be split up into two transitions, in the form of a 4-tuple:
(state, scanned symbol) --> (new written symbol or move of the head, new state)This alternative definition was introduced by Post in 1947 (Recursive unsolvability of a problem of Thue, The Journal of Symbolic Logic, Vol. 12, 1-11). So Turing machines defined by 4-tuples are also called Post machines (see the Wikipedia site on Post-Turing machines).
2 - Busy beavers whose head can stand still
3 - Two-dimensional busy beavers
For S_{2}(k,n): (k states, n symbols)
3 symbols | 38 | ? | ||
2 symbols | 6 | 32 | 4632 ? | 25,772,988,638 ? |
2 states | 3 states | 4 states | 5 states |
For Sigma_{2}(k,n):
3 symbols | 10 | ? | ||
2 symbols | 4 | 11 | 244 ? | 935,508,401 ? |
2 states | 3 states | 4 states | 5 states |
Note that
S_{2}(3,2) = 32 > S(3,2) = 21,and
Sigma_{2}(3,2) = 11 > Sigma(3,2) = 6.
References
Links to the web