Determinant versus Permanent: salvation via generalization?
The algebraic complexity of the Fermionant and the Immanant

N. de Rugy-Altherre

Univ Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu, UMR 7586 CNRS, F-75205 Paris, France

July 3, 2013
1. Algebraic complexity

2. Immanant
\[f(x, y) = (x + y)^2(z + 3) + 2(x + y)^2 + (z + 3)^2 \]

Definition

The *size* of an arithmetic circuit is the number of operational gates.
Algebraic complexity

Immanant

\[f(x, y) = (x + y)^2(z + 3) + 2(x + y)^2 + (z + 3)^2 \]

Definition

The *size* of an arithmetic circuit is the number of operational gates.
Definition

A family \(F = (f_n) \) of polynomials is in \(VP \) if there exists a family of circuits \(C_n \) of polynomial size such that for any \(n \)

\[
f_n \text{ is computed by } C_n
\]
Definition
A family \(F = (f_n) \) of polynomials is in \(VP \) if there exists a family of circuits \(C_n \) of polynomial size such that for any \(n \)

\[f_n \text{ is computed by } C_n \]

Definition
A family \(F = (f_n) \) is in \(VNP \) if there is a family \(G = (g_n) \) in \(VP \) such that

\[f_n(\bar{x}) = \sum_{\bar{\epsilon} \in \{0,1\}^n} g_n(\bar{\epsilon}, \bar{x}) \]
Definition
Let S_n be the symmetric group on n elements and if $\pi \in S_n$, $c(\pi)$ its number of cycles. The determinant is

$$\det_n(\bar{x}) = (-1)^n \sum_{\pi \in S_n} (-1)^{c(\pi)} \prod_{i=1}^{n} x_{i\pi(i)}$$

Theorem (Valiant 79)
The family $\det = (\det_n)_{n \in \mathbb{N}}$ is in VP
Definition

Let S_n be the symmetric group on n elements and if $\pi \in S_n$, $c(\pi)$ its number of cycles. The determinant is

$$\det_n(x) = (-1)^n \sum_{\pi \in S_n} (-1)^{c(\pi)} \prod_{i=1}^{n} x_{i\pi(i)}$$

Theorem (Valiant 79)

The family $\det = (\det_n)_{n \in \mathbb{N}}$ is in VP
Definition

Let S_n be the symmetric group on n elements and if $\pi \in S_n$, $c(\pi)$ its number of cycles. The permanent is

$$\text{per}_n(\bar{x}) = \sum_{\pi \in S_n} \prod_{i=1}^{n} x_{i\pi(i)}$$

Theorem (Valiant 79)

The family $\text{per} = (\text{per}_n)_{n \in \mathbb{N}}$ is VNP-complete.
Definition

Let S_n be the symmetric group on n elements and if $\pi \in S_n$, $c(\pi)$ its number of cycles. The permanent is

$$\text{per}_n(\bar{x}) = \sum_{\pi \in S_n} \prod_{i=1}^{n} x_{i\pi(i)}$$

Theorem (Valiant 79)

The family $\text{per} = (\text{per}_n)_{n \in \mathbb{N}}$ is VNP-complete
Conjecture (Valiant hypothesis)

\[VP \neq VNP \]

Theorem (Bürgisser 2000)

Under Generalized Riemann Hypothesis,

\[VP = VNP \Rightarrow P/poly = NP/poly \]
Conjecture (Valiant hypothesis)

\[VP \neq VNP \]

Theorem (Bürgisser 2000)

Under Generalized Riemann Hypothesis,

\[VP = VNP \Rightarrow P/poly = NP/poly \]

The main approaches of Valiant Hypothesis:
- Geometric Complexity Theory (GCT)
- Lower bounds
- The study of complexity classes (Characterization, complete polynomials)
Conjecture (Valiant hypothesis)

\[VP \neq VNP \]

Theorem (Bürgisser 2000)

Under Generalized Riemann Hypothesis,

\[VP = VNP \implies P/poly = NP/poly \]

The main approaches of Valiant Hypothesis:

- Geometric Complexity Theory (GCT)
- Lower bounds
- The study of complexity classes (Characterization, complete polynomials)
Definition (informal)

A generalization of the determinant and the permanent is a series of family $F^k = (f_n)^k$ indexed by some k such that

- For certain k, F^k are in VP
- For others k, F^k are VNP-complete.
Definition
A young diagram is a collection of boxes in left adjusted row with decreasing row length.

Young diagrams

\[
\begin{array}{c}
[4, 4] \\
\begin{array}{cccc}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}
\end{array}
\quad
\begin{array}{c}
[4, 2] \\
\begin{array}{ccc}
& & \\
& & \\
\end{array}
\end{array}
\]

Definition
Let \(\chi_Y \) be an irreducible character of \(S_n \). Then

\[
\text{im}_\chi(\bar{x}) = \sum_{\pi \in S_n} \chi_Y(\pi) \prod_{i=1}^{n} x_{i,\pi(i)}
\]
Exemple

If Y is a single row, then $\text{im}_Y(\bar{x}) = \text{per}(\bar{x})$.

Exemple

If Z is a single column, then $\text{im}_Z(\bar{x}) = \text{det}(\bar{x})$.
Theorem (Bürgisser 2000)

If \((Y_n)\) is a family of Young diagrams with only a constant number of boxes at the right of the first column, then

\[(\text{im}_{Y_n})\text{ is in VP}\]
Theorem (Brylinski 2003)

Let Y_n be Young diagrams such that the maximal difference between the size of two consecutive rows is $\Omega(n)$, then

$$(im_{Y_n}) \text{ is VNP-complete}$$
Theorem (Brylinski 2003)

Let Y_n be Young diagrams such that the maximal difference between the size of two consecutive rows is $\Omega(n)$, then

$$(im_{Y_n}) \text{ is VNP-complete}$$
Theorem (2)

Let \([n, n]\) be the Young diagram with two columns, each with \(n\) boxes. Then

\[
(\text{im}_{[n,n]}) \text{ is VNP-complete}
\]
Theorem (2)

Let \([n, n]\) be the Young diagram with two columns, each with \(n\) boxes. Then

\[(\text{im}_{[n,n]})\text{ is VNP-complete}\]

Theorem (3)

If \((Y_n)\) has a polynomial number of boxes at the right of the first column and a constant number of columns, then

\[(\text{im}_{Y_n})\text{ is VNP-complete}\]
Theorem (2)

Let \([n, n]\) be the Young diagram with two columns, each with \(n\) boxes. Then

\[(\text{im}_{[n,n]})\text{ is VNP-complete}\]

Theorem (3)

If \((Y_n)\) has a polynomial number of boxes at the right of the first column and a constant number of columns, then

\[(\text{im}_{Y_n})\text{ is VNP-complete}\]
Theorem (Conclusion)

Let \((Y_n)\) be a family of Young diagrams with a constant number of columns such that \(|Y_n| = \Omega(n)\). Then

- If the number of boxes at the right of the first column is constant \(c\), then \((\text{im}_{Y_n})\) is in \(\text{VP}\).
- If the number of boxes at the right of the first column is logarithmic, then \((\text{im}_{Y_n})\) is not \(\text{VNP}\)-complete.
- If the number of boxes at the right of the first column is polynomial, \((\text{im}_{Y_n})\) is \(\text{VNP}\)-complete.

Perspectives

- Studying the class of polynomials computed by sub-exponentiel circuits.
- Finding a \(\text{VP}\)-complete family!
Theorem (Conclusion)

Let (Y_n) be a family of Young diagrams with a constant number of columns such that $|Y_n| = \Omega(n)$. Then

- If the number of boxes at the right of the first column is constant c, then (im_{Y_n}) is in VP.
- If the number of boxes at the right of the first column is logarithmic, then (im_{Y_n}) is not VNP-complete.
- If the number of boxes at the right of the first column is polynomial, (im_{Y_n}) is VNP-complete.

Perspectives

- Studying the class of polynomials computed by sub-exponentiel circuits.
- Finding a VP-complete family!
Thank you!
Definition

If π is a permutation, $c(\pi)$ is its number of cycles.

\[
\text{Ferm}_n^k A = (-1)^n \sum_{\pi \in S_n} (-k)^{c(\pi)} \prod_{i=1}^{n} A_{i, \pi(i)}
\]

Let Ferm_n^k the family of (Ferm_n^k)

- If $k = 1$, then $\text{Ferm}_n^1(\bar{x}) = \det(\bar{x})$
- If $k = -1$, then $\text{Ferm}_n^{-1}(\bar{x}) = \text{per}(\bar{x})$
Definition

If \(\pi \) is a permutation, \(c(\pi) \) is its number of cycles.

\[
\text{Ferm}_n^k A = (-1)^n \sum_{\pi \in S_n} (-k)^{c(\pi)} \prod_{i=1}^{n} A_{i,\pi(i)}
\]

Let \(\text{Ferm}_n^k \) the family of \((\text{Ferm}_n^k) \)

- If \(k = 1 \), then \(\text{Ferm}_n^1(\bar{x}) = \det(\bar{x}) \)
- If \(k = -1 \), then \(\text{Ferm}_n^{-1}(\bar{x}) = \per(\bar{x}) \)
Theorem (1)

- $\text{Ferm}^0 = 0$.
- Ferm^1 is in VP
- For $k \in \mathbb{Q}$ different from 0, 1 Ferm^k is VNP-complete.