Determinant versus Permanent: salvation via generalization?

The algebraic complexity of the Fermionant and the Immanant

N. de Rugy-Altherre

Univ Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu,
UMR 7586 CNRS,
F-75205 Paris, France

January 7, 2014
Published in CiE 2013
The size of the entry is the number of variables. The size of an arithmetic circuit is the number of operational gates.

\[f(x, y) = (x + y)^2(z + 3) + 2(x + y)^2 + (z + 3)^2 \]
$$f(x, y) = (x + y)^2(z + 3) + 2(x + y)^2 + (z + 3)^2$$

Definition

The size of the entry is the number of variables. The size of an arithmetic circuit is the number of operational gates.
Definition
A family \(F = (f_n) \) of polynomials is in \(VP \) if there exists a family of circuits \(C_n \) of polynomial size such that for any \(n \)

\[
f_n \text{ is computed by } C_n
\]

Definition
A family \(F = (f_n) \) is in \(VNP \) if there is a family \(G = (g_n) \) in \(VP \) such that

\[
f_n(\bar{x}) = \sum_{\bar{\epsilon} \in \{0,1\}^n} g_n(\bar{\epsilon}, \bar{x})
\]
Definition

A family $F = (f_n)$ of polynomials is in VP if there exists a family of circuits C_n of polynomial size such that for any n

$$f_n \text{ is computed by } C_n$$

Definition

A family $F = (f_n)$ is in VNP if there is a family $G = (g_n)$ in VP such that

$$f_n(\bar{x}) = \sum_{\bar{\epsilon} \in \{0,1\}^n} g_n(\bar{\epsilon}, \bar{x})$$
Definition

Let S_n be the symmetric group on n elements and if $\pi \in S_n$, $c(\pi)$ its number of cycles. The determinant is

$$
det_n(\bar{x}) = (-1)^n \sum_{\pi \in S_n} (-1)^{c(\pi)} \prod_{i=1}^{n} x_{i\pi(i)}$$

Theorem (Valiant 79)

The family $\text{det} = (\det_n)_{n \in \mathbb{N}}$ is in VP
Definition

Let S_n be the symmetric group on n elements and if $\pi \in S_n$, $c(\pi)$ its number of cycles. The determinant is

$$\det_n(x) = (-1)^n \sum_{\pi \in S_n} (-1)^{c(\pi)} \prod_{i=1}^{n} x_{\pi(i)}$$

Theorem (Valiant 79)

The family $\text{det} = (\det_n)_{n \in \mathbb{N}}$ is in VP
Definition

Let S_n be the symmetric group on n elements and if $\pi \in S_n$, $c(\pi)$ its number of cycles. The permanent is

$$\text{per}_n(\bar{x}) = \sum_{\pi \in S_n} \prod_{i=1}^{n} x_{i\pi(i)}$$

Theorem (Valiant 79)

The family $\text{per} = (\text{per}_n)_{n \in \mathbb{N}}$ is VNP-complete.
Definition

Let S_n be the symmetric group on n elements and if $\pi \in S_n$, $c(\pi)$ its number of cycles. The permanent is

$$\text{per}_n(\bar{x}) = \sum_{\pi \in S_n} \prod_{i=1}^{n} x_{i\pi(i)}$$

Theorem (Valiant 79)

The family $\text{per} = (\text{per}_n)_{n \in \mathbb{N}}$ is VNP-complete
Conjecture (Valiant hypothesis)

$\text{VP} \neq \text{VNP}$

Theorem (Bürgisser 2000)

Under Generalized Riemann Hypothesis,

$\text{VP} = \text{VNP} \Rightarrow \text{P/poly} = \text{NP/poly}$
Conjecture (Valiant hypothesis)

\[\text{VP} \neq \text{VNP} \]

Theorem (Bürgisser 2000)

Under Generalized Riemann Hypothesis,

\[\text{VP} = \text{VNP} \Rightarrow P/poly = NP/poly \]

The main approaches of Valiant Hypothesis:

- Geometric Complexity Theory (GCT)
- Lower bounds
- The study of complexity classes (Characterization, complete polynomials)
Conjecture (Valiant hypothesis)

$$\text{VP} \neq \text{VNP}$$

Theorem (Bürgisser 2000)

Under Generalized Riemann Hypothesis,

$$\text{VP} = \text{VNP} \Rightarrow \text{P/poly} = \text{NP/poly}$$

The main approaches of Valiant Hypothesis:

- Geometric Complexity Theory (GCT)
- Lower bounds
- The study of complexity classes (Characterization, complete polynomials)
Definition (informal)

A generalization of the determinant and the permanent is a series of family \(\mathbf{F}^k = (f_n)^k \) indexed by some \(k \) such that

- For certain \(k \), \(\mathbf{F}^k \) are in \(\text{VP} \)
- For others \(k \), \(\mathbf{F}^k \) are \(\text{VNP-complete} \).
If π is a permutation, $c(\pi)$ is its number of cycles.

$$\text{Ferm}_n^k A = (-1)^n \sum_{\pi \in S_n} (-k)^{c(\pi)} \prod_{i=1}^{n} A_{i,\pi(i)}$$

Let Ferm_n^k the family of (Ferm_n^k)

- If $k = 1$, then $\text{Ferm}_n^1(\bar{x}) = \det(\bar{x})$
- If $k = -1$, then $\text{Ferm}_n^{-1}(\bar{x}) = \text{per}(\bar{x})$
Definition

If π is a permutation, $c(\pi)$ is its number of cycles.

$$\text{Ferm}_n^k A = (-1)^n \sum_{\pi \in S_n} (-k)^{c(\pi)} \prod_{i=1}^{n} A_{i, \pi(i)}$$

Let Ferm_n^k the family of (Ferm_n^k)

- If $k = 1$, then $\text{Ferm}_n^1(\bar{x}) = \det(\bar{x})$
- If $k = -1$, then $\text{Ferm}_n^{-1}(\bar{x}) = \text{per}(\bar{x})$
Definition

If π is a permutation, $c(\pi)$ is its number of cycles.

$$Ferm^k_n A = (-1)^n \sum_{\pi \in S_n} (-k)^{c(\pi)} \prod_{i=1}^{n} A_{i, \pi(i)}$$

Let $Ferm^k$ the family of $(Ferm^k_n)$

- Introduce by Chandrasekharan and Wiese (2011)
- And as the α-permanent by Vere-Jones (1998)
If π is a permutation, $c(\pi)$ is its number of cycles.

\[
\text{Ferm}_n^k A = (-1)^n \sum_{\pi \in S_n} (-1)^{c(\pi)} \prod_{i=1}^{n} A_{i, \pi(i)}
\]

Let Ferm_n^k the family of (Ferm_n^k)

- Introduce by Chandrasekharan and Wiese (2011)
- And as the α-permanent by Vere-Jones (1998)
- Mertens and Moore (2011): Ferm_n^k is $\#P$-complete for $k > 2$
Definition

If π is a permutation, $c(\pi)$ is its number of cycles.

$$\text{Ferm}_n^k A = (-1)^n \sum_{\pi \in S_n} (-k)^{c(\pi)} \prod_{i=1}^{n} A_{i, \pi(i)}$$

Let Ferm_n^k the family of (Ferm_n^k)

- Introduce by Chandrasekharan and Wiese (2011)
- And as the α-permanent by Vere-Jones (1998)
- Mertens and Moore (2011): Ferm_n^k is $\#P$-complete for $k > 2$
Theorem (1)

- $\text{Ferm}^0 = 0$.
- Ferm^1 is in VP
- for $k \in \mathbb{Q}$ different from 0, 1 Ferm^k is VNP-complete.

Corollary

Ferm^k is $\#P$-complete for any rational $k \notin \{0, 1\}$.

N. de Rugy-Altherre

Determinant versus Permanent: salvation via generalization?
Theorem (1)

- $Ferm^0 = 0$.
- $Ferm^1$ is in VP
- for $k \in \mathbb{Q}$ different from 0, 1 $Ferm^k$ is VNP-complete.

Corollary

$Ferm^k$ is $\#P$-complete for any rational $k \notin \{0, 1\}$.
Lemma (Idea of the demonstration)

Let $X = (x_{i,j})_{i,j \in [n]}$ be the matrix of variables. For any $l \in \mathbb{N}$ there exists a transformation P_l of X such that

$$\text{Ferm}^k(P_l(X)) = \sum_{\pi \in S_n} (-k)^{c(\pi) \times l} \prod_{i=1}^{n} x_{i,\pi(i)}$$
Definition

A young diagram is a collection of boxes in left adjusted row with decreasing row length.

\[
\begin{array}{c}
\text{Young diagrams} \\
[4, 4] & [4, 2] \\
\end{array}
\]

\[
\begin{array}{c}
\text{Young diagrams} \\
\begin{array}{c}
\text{[4, 4]} \\
\text{[4, 2]} \\
\end{array}
\end{array}
\]

Definition

Let \(\chi_Y \) be an irreducible character of \(S_n \). Then

\[
im_{\chi}(\bar{x}) = \sum_{\pi \in S_n} \chi_Y(\pi) \prod_{i=1}^{n} x_{i,\pi(i)}
\]
Exemple
If Y is a single row, then $\text{im}_Y(\bar{x}) = \text{per}(\bar{x})$.

Exemple
If Z is a single column, then $\text{im}_Z(\bar{x}) = \text{det}(\bar{x})$.
Theorem (Bürgisser 2000)

If \((Y_n)\) is a family of Young diagrams with only a constant number of boxes at the right of the first column, then

\[(im_{Y_n})\] is in VP
Theorem (Brylinski 2003)

Let Y_n be Young diagrams such that the maximal difference between the size of two consecutive rows is $\Omega(n)$, then

$(\text{im} Y_n)$ is VNP-complete
Theorem (Brylinski 2003)

Let Y_n be Young diagrams such that the maximal difference between the size of two consecutive rows is $\Omega(n)$, then

$$(\text{im}_{Y_n}) \text{ is VNP-complete}$$
Theorem (2)

Let \([n, n]\) be the Young diagram with two columns, each with \(n\) boxes. Then

\[(\text{im}[n, n])\] is VNP-complete
Theorem (2)

Let \([n, n]\) be the Young diagram with two columns, each with \(n\) boxes. Then

\[
\text{(im}_{[n,n]}\right) \text{ is VNP-complete}
\]
Theorem (2)

Let \([n, n]\) be the Young diagram with two columns, each with \(n\) boxes. Then

\((\text{im}_{[n, n]})\) is VNP-complete

Theorem (3)

If \((Y_n)\) has a polynomial number of boxes at the right of the first column and a constant number of columns, then

\((\text{im}_{Y_n})\) is VNP-complete
Proposition

For any integers k, n, if we write Λ_{k}^{n} the set of every Young diagrams with n boxes and at most k columns, then there exists some rational constants d_{Y}^{k} such that for any matrix A,

$$\text{Ferm}_{n}^{k}(A) = \sum_{Y \in \Lambda_{k}^{n}} d_{Y}^{k} \text{im}_{Y}(A)$$
Theorem (Conclusion)

Let \((Y_n)\) be a family of Young diagrams with a constant number of columns such that \(|Y_n| = \Omega(n)\). Then

- If the number of boxes at the right of the first column is constant \(c\), then \((\text{im}_{Y_n})\) is in \(\text{VP}\).
- If the number of boxes at the right of the first column is logarithmic, then \((\text{im}_{Y_n})\) is not \(\text{VNP}\)-complete.
- If the number of boxes at the right of the first column is polynomial, \((\text{im}_{Y_n})\) is \(\text{VNP}\)-complete.

Perspectives

- Studying the class of polynomials computed by sub-exponentiel circuits.
- Finding a \(\text{VP}\)-complete family!
Theorem (Conclusion)

Let \((Y_n)\) be a family of Young diagrams with a constant number of columns such that \(|Y_n| = \Omega(n)\). Then

- If the number of boxes at the right of the first column is constant \(c\), then \((\text{im}_{Y_n})\) is in VP.
- If the number of boxes at the right of the first column is logarithmic, then \((\text{im}_{Y_n})\) is not VNP-complete.
- If the number of boxes at the right of the first column is polynomial, \((\text{im}_{Y_n})\) is VNP-complete.

Perspectives

- Studying the class of polynomials computed by sub-exponentiel circuits.
- Finding a VP-complete family!
Thank you!