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Abstract
Here is an introduction to the talks of Jonathan Kirby and Piotr

Kowalski about the Ax-Schanuel property, given in La Roche, April
2008, during the Modnet training workshop. The reader will find here
a synthesis of the main part of both talks, the effort being placed on
their common features. One should refer to the documents edited by
the speakers for technical details and more examples. I want to thank
the speakers for their help in answering several questions.

The Lindemann-Weierstrass theorem states that if x1, . . . , xn are al-
gebraic numbers over Q, then the transcendence degree of ex1 , . . . , exn is
n, thereby gathering the transcendence of π and e in a single statement.
Schanuel’s conjecture is a direct attempt to generalize this result : if the
xi’s contribute to the trancendance degree, what can we say ?

Conjecture (Schanuel). Let x1, . . . , xn ∈ C, such that the xi’s are Q-
linearly independent. Then the transcendence degree of x1, . . . , xn, ex1 , . . . ,
exn over the rationals is at least n.

Now let M(C) be the field of meromorphic functions on the complex
plane, i.e. the field of fractions of the ring of holomorphic functions on the
plane. The fieldM(C) can naturally be equiped with the derivation ∂ := ∂

∂z
.

For every f ∈ M(C), the differential equation ∂(exp◦f)
exp◦f = ∂f is satisfied

in M(C). Besides, in a characteristic zero filed, Q-linear dependence is
equivalent to Z-linear dependence.
The Ax theorem is an analogue of Schanuel’s conjecture for differential fields
in characteristic zero. It retains from the relation between x and ex the
differential equation ∂y

y = ∂x, and for technical reasons the transcendence
degree, which is taken on C, the field of constants of the differential field
(K, ∂), is increased by 1 in the formulation. Now for xi, . . . , xn, y1, . . . , yn ∈
K such that for all i ∂yi

yi
= ∂xi, one has ∂(

∏
i y

mi
i ) = (

∏
i y

mi
i )

∑
i mi∂(xi), so

one has
∑

i mixi ∈ C ⇔ ∂(
∑

i mixi) = 0 ⇔ ∂(
∏

i y
mi
i ) = 0 ⇔

∏
i y

mi
i ∈ C.

Hence the Ax’s theorem is stated as follows.

Theorem (Ax). Suppose n ≥ 1, ∂xi = ∂yi

yi
for i = 1, . . . , n, and

td(x1, y1, . . . , xn, yn/C) < n + 1. Then there are mi ∈ Z, not all zero, such
that

∏n
i=1 ymi

i ∈ C.
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The Generalized Schanuel Property in characteric-
tic zero

A geometric version of Ax’s theorem

This theorem may be restated in more geometric terms. In order to see
it, we introduce the tangent bundle and space of a commutative algebraic
group.

Definition (Tangent bundle and space). Let V be a variety over a field F .
Another variety TV is a tangent bundle of V , if for any F -algebra R, there
is a functorial bijection between V (R[X]/(X2)) and TV (R). Because there
is a copy of K in K[X]/(X2), there is a projection homomorphism TG→ G
: if P is an R-rational point of V , then the tangent space of the variety V (R)
at P is the fiber of the projection TV → V over P (seen in V (R[X]/(X2))).

Now if G is an algebraic group over a field F , the tangent space at the
identity is called the Lie algebra of G.

Proposition. If G is a commutative algebraic group over a field F , there is
an isomorphism between TG and LG×G.

So from now on, we will identify TG and LG × G. We must notice
that if dim(G) = n, then LG ∼= Gn

a , so we have the canonical identification
Gn

a × Gn
m
∼= LGn

m × Gn
m
∼= TGn

m. As before let (K, ∂) be a differential
field of characteristic zero, and C its field of constants : the condition ∂y

y =
∂x defines a subgroup Γ of Ga ×Gm : so the hypothesis on the xi’s and
yi’s are replaced by the choice of a tuple in Γ. Next we remark that to
the “independence” condition

∏n
i=1 ymi

i ∈ C corresponds a (commutative)
subgroup H of Gn

m, defined by the equation
∏n

i=1 ymi
i = 1, so the condition is

equivalent to the statement that y lies in a C-coset of an algebraic subgroup
H of Gn

m. For such an H, the Lie algebra of H is given by the equation∑
i mixi = 0 (remember (x = (x1, . . . , xn),y) is a tuple in Γ); again the

condition
∑

i mixi is equivalent to the statement that x lies in a C-coset of
LH. So the condition on y is equivalent to a condition on (x,y), an element
of TGn

m as we noted before. Finally, the condition on the transcendence
degree is replaced by the hypothesis that (x,y) lies in an algebraic suvariety
of Gn

a ×Gn
m of dimension < n + 1, and we have the

Theorem (Ax’s theorem - version 2). Let V be an algebraic subvariety of
Gn

a ×Gn
m defined over C, of dimension dimV < n + 1 and (x,y) ∈ Γn ∩ V .

Then (x,y) ∈ TH(K) + γ, where H is a proper algebraic subgroup of Gn
m

and γ ∈ TGn
m(C).

The exponential differential equation of an algebraic group

Where have we got so far ? We have started from the exponential func-
tion, an analytic (épi)morphism from C onto C∗, two complex Lie groups,
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the first being the Lie algebra of the second. From this function we got a
differential equation ∂y

y = ∂x satisfied by the exponential of every element
of the differential field of meromorphic functions. From the solution set of
this “exponential” differential equation was then extracted a tuple, upon the
transcendence degree (on the constants field) of which is formulated Ax’s
theorem property. We broaden the setting again. One can check that if
K is a field, a map ∂ : K → K is a derivation if and only if the map
K → K[X]/(X2), a 7→ a + ∂(a)X is a ring homomorphism. In other words,
the structure of a derivation map and a tangent bundle are both “encoded”
in the dual numbers construction. In this situation, if C is the field of con-
stants of (K, ∂), and G an algebraic group over C, the map ∂ gives a (K, ∂)
definable homomorphism ∂G from G(K) to G(K[X]/(X2)) ∼= TG(K). In
this case we have seen that there is a canonical projection map π from
TG(K) ∼= LG(K) × G(K) to LG(K). Composing ∂G with this projection
one gets a map l∂G := π ◦ ∂G : G(K) → LG(K), which we call the “loga-
rithmic derivative map”, to which is associated the “exponential differential
equation of G”.

l∂LG(x) = l∂G(y).

Notice here that LLG = LG so that l∂LG is from LG(K) to LG(K).

The Generalized Schanuel Property

Once this is said, to each algebraic group we can then associate ΓG, the
solution set in K of its exponential differential equation, thus appealing to
another generalization of Ax’s result. The decomposition of commutative
connected algebraic groups of Chevalley gives in the case of vector groups
a counterexample to this generalization, but we have the following, true in
particular for semiabelian varieties.

Theorem (Generalized Schanuel Property). Let G be a nvq-group of di-
mension n, defined over the field of constants C of a differential field (K, ∂)
of characteristic zero, and ΓG ⊆ TG(K) the solution set of the exponential
differential equation of G. Let (x, y) ∈ ΓG ∩V , where V is an algebraic sub-
variety of TG(K) defined over C, and of dimension dimV < n + 1. Then
there exists a proper algebraic subgroup H of G and an element γ ∈ TG(C)
such that (x, y) ∈ TH(K) + γ.

At this point we should explain the “extra 1” which appears in the
transcendence degree in Ax’s theorem and the generalized Schanuel prop-
erty. With the above notations, we first define the group rank of x over
C (grkC(x)), as the dimension of the largest subgroup H of G such that x
lies in a C-coset of LH (In the case where G is a torus, this is just the Q-
linear dimension of the Q-vector space 〈x,C〉/C (the quotient space)). For a
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point (x, y) ∈ ΓG, we then define a quantity δC(x, y) := tdC(x, y)−grkC(x).
This δ is a first approximation to the dimension of the pair (x, y) in an
appropriate pregeometry. Schanuel’s conjecture is that δ ≥ 0. It follows
from Schanuel’s conjecture (and in the case of differential fields is Ax’s the-
orem) that δ(x, y) ≥ dim(x, y) where dim is the dimension in the sense of
this pregeometry. In the differential fields case, C is the closure of the empty
set. So if δ(x, y) = 0 then in fact (x, y) has dimension 0 over C, so (since
C is closed), actually lies in C. Hence if (x, y) does not lie in C, it must be
that dim(x, y) ≥ 1, and here is the extra 1. (In this case, we are assuming
that x does not lie in any such coset, which means that grkC(x) = n.)

The Ax-Schanuel Property in characteristic p

The essentials of the characteristic zero case

In this part, (K, ∂) is a differential field of characteristic zero and of field of
constants C.
In the first section, we dealt with the exponential differential equation of a
commutative algebraic group. This equation was somehow “lifted up” from
an analytic morphism, the complex exponential function. This is a particular
case of the differential equation associated to an analytic homomorphism.
To find a suitable generalization of Schanuel’s property in characteristic p,
where the exponential function does not exist, one needs to look at the
general setting in order to search for suitable analogs.
If A and B are commutative algebraic groups defined over C and G := A×B,
we have the logarithmic derivative maps l∂A : A→ LA and l∂B : B → LB.
Now if f : A → B is an algebraic homomorphism of groups, the functor
L (Lie algebra) induces a linear map Lf : LA → LB, and the logarithmic
derivative is a natural transformation between the identity functor and the L
functor on commutative algebraic groups; in other words, one has Lf ◦l∂A =
l∂B ◦ f . The differential equation of f is then defined from this natural
condition as Lf(l∂A(x)) = l∂B(y), and its solution set Γf is a definable
subgroup of G(K).
Of course the exponential function was not an algebraic morphism, but this
setting somehow generalizes to analytic morphisms, since the map f does not
appear in the definition of its differential equation ! Indeed, if C ⊆ C, and
A and B are defined over C, then the analytical structure of C makes A(C)
and B(C) complex Lie groups, and every algebraic morphism between them
is analytic. In general, if f : A(C) → B(C) is an analytic homomorphism,
we can still associate to f a linear map Lf := f ′0 : LA(C)→ LB(C), where
0 is the identity of A(C). Tensorization lifts up this map to a K-linear map
Lf : LA(K)→ LB(K). In this context, even if the morphism f does not lift
up to K, because K has no topology in order to speak about analycity, we
still can speak about the differential equation of f , given by the information
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translated in Lf : Lf(l∂A(x)) = l∂B(y), and then about the solution set
Γf , still a definable subgroup of G(K). For example in general there exists
an analytic epimorphism expB : LB(C) → B(C), the universal covering of
B(C). In this case, the differential equation associated is the exponential
differential equation of the first section.
All this allows to give a still more general version of Schanuel’s property,
which an analytic morphism would satisfy or not. In the first section case, we
considered automatically the exponential case, where A was the Lie algebra
of B, so in this version we need to replace the clause of the conclusion
concerning TH(K) and γ by a suitable one: the proper algebraic subgroup H
of G and its tangent bundle TH are replaced by proper algebraic subgroups
A0 < A and B0 < B over C, and TG(C) is replaced by A(C) and B(C).
This allows the

Definition (Ax-Schanuel Property in characteristic zero). With the same
notations, assuming that C ⊆ C and f : A(C) → B(C) is a local analytic
homomorphism, we say that Γf , the solution set in K of the differential
equation of f , has the Ax-Schanuel property, if whenever (a, b) ∈ Γf and
tdC(a, b) ≤ n, then there are proper algebraic subgroups A0 < A and B0 < B
defined over C, such that a ∈ A0(K) + A(C) and b ∈ B0(K) + B(C).

Ax’s theorem says exactly that the exponential function from Gn
a to Gn

m

has the Ax-Schanuel property, while the Ax-Schanuel property for expA for
an nvq-group A is the generalized Schanuel property of the first section.

Towards the characteristic p case

Having extracted somewhat the “essence” of the Schanuel property in char-
acteristic zero, one would want to consider this property in characteristic p :
more precisely, are there some kind of “analytic”morphisms having the “Ax-
Schanuel” property ? Several problems arise in characteristic p; the absence
of an analytic structure (what is an analytic morphism ?) and the fact that
the statement of Ax is meaningless : if (K, ∂) is a differential field of char p,
then for each x = yp ∈ Kp, the derivation rule implies ∂(x) = p∂(y)yp−1 = 0,
so Kp ⊆ C and K is algebraic over C (Xp − xp algebraizes x).
The trick is to get rid of the “problem” by “correcting” the iterations of the
derivation by a multiplicative factor. For instance, if ∂ is the derivation
on M(C), let ∂(n) denote the n-th iteration of ∂, and let D0 := id, and
Dn := 1

n!∂
(n), for n ≥ 1. In other words, the sequence (Dn)n<ω “extracts”

from a holomorphic function f the sequence Dn(f) of coefficient-functions
of the power series expansion of f . The Di’s have the following properties :

. D0 is the identity map

. Each Dn is additive

5



. Dn(xy) =
∑

i+j=n Di(x)Dj(y) for all n, x, y (Leibniz rule)

. Di ◦Dj = (i+j
i )Di+j for all i, j (iterativity condition)

This turns out to be the suitable generalization of a derivation on a field in
characteristic p.

Definitions (Hasse-Schmidt derivation, Hasse field). Let K be a field. A
sequence D of maps Dn : K → K, n < ω, satisfying the preceding condi-
tions, is called a Hasse-Schmidt derivation on K. The constant field is the
field C :=

⋂
n>0 ker(Dn). Such a field is called a Hasse field.

In general, the field K is not algebraic over C, and this is the context in
which we look for an analog of the Ax-Shanuel property.
We defined in the first section a tangent bundle of a variety through the
ring of dual numbers R[X]/(X2), remarking that this ring was somehow
canonically associated to the structure of a derivation on a ring. In similar
fashion, a sequence of maps D := (Di)i<ω from a field K to itself is a Hasse-
Schmidt derivation if and only if the map K → K[[X]], a 7→

∑
i<ω Di(a)Xi

is a ring homomorphism and D satisfies the iterativity condition. Thus in
the Hasse fields setting, the role played by R[X]/(X2) in a differential field
for a C-algebra R, will be played by the ring R[[X]] of formal power series.
Now we have a canonical isomorphism between R[[X]] and the projective
limit of the rings R[X]/(Xn), so we can define an analog of the tangent
bundle in the HS setting. From now on let (K, D) be a Hasse field of field
of constants C.

Definitions (Arc spaces). Let V be a variety defined over C. The nth arc
space of V is a variety Arcn(V ) satisfying a functorial bijection Arcn(V )(R)
←→ V (R[X]/(Xn+1)), for every C-algebra R. The full arc space of V ,
Arc(V ) is then defined as the projective limit of the Arcn(V )’s. It is a
pro-algebraic variety.

Remember that the Lie algebra LG of an algebraic group G was defined
as the fiber over the identity of the tangent bundle TG. The equivalent in
Hasse fields is defined in the same way, as the fiber UG over the identity of
the projection homomorphism Arc(G)→ G, where G is an algebraic group
defined over C. If G is commutative, then we still have a canonical isomor-
phism Arc(G) ∼= UG ×G.
Now the logarithmic derivative map on a group G(K) was also introduced
in the differential setting through a definable homomorphism from G(K) to
TG(K). Similarly in the HS setting, if G is an algebraic group defined over
C, the HS derivation D induces a (K, D)-type-definable homomorphism DG

from G(K) to G(K[[X]]) ∼= Arc(G)(K). But we have an analog projection
π from Arc(G)(K) to UG(K), so by composing we can define the full loga-
rithmic derivative lDG := π ◦DG : G(K)→ UG(K).
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The last task is to find an equivalent of an “analytic morphism”between two
algebraic groups defined over C, and to the “differential equation” of such
a morphism. Concerning the maps, the key notions are those of a formal
group law and a formal homomorphism between such group laws. The idea
is that the product of a Lie group has a formal power series expansion at
the identity, of a certain form, and that in general this kind of formal power
series defines a group product.

Definitions (Formal group). A one-dimensional formal group law over a
commutative ring R is a power series F (x, y) with coefficients in R, such
that

. F (x, y) = x + y+ terms of higher degree

. F (x, F (y, z)) = F (F (x, y), z) (associativity)

An n-dimensional formal group law is an n-tuple of power series
Fi(x1, . . . , xn, y1, . . . , yn) in 2n variables, such that

. F(x,y) = x + y+ terms of higher degree

. F(x,F(y, z)) = F(F(x,y), z)

where F is for (F1, ..., Fn), x for (x1, ..., xn).

There is a notion of homomorphim between such groups.

Definition. Let F and G be formal group laws of dimension m and n,
respectively. A homomorphism f from F to G is an n-tuple of power series
in m variables, such that G(f(x), f(y)) = f(F(x,y)).

This allows to introduce a formal analog of “analycity” where there is
no topology to speak about Lie groups. In characteristic zero, there is an
equivalence of categories between finite dimensional Lie algebras and formal
group laws. In characteristic p this is not true, and formal group laws are
used instead of Lie algebras to avoid loss of information.
Now in generality, to each algebraic group G can be canonically associated a
formal group law. The reader interested in formal group laws can find more
informations on them in www.wikipedia.org [formal group law]. Analytic
maps between Lie groups will then be replaced in the HS setting by formal
homomorphisms between algebraic groups, i.e. between their “canonical
formal group laws”, because in generality a formal homomorphism between
algebraic groups still induces a linear map between the Lie algebras of the
groups.
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The HS-differential Ax-Schanuel property

We are then led to consider the generalized set-up in which we will state
the “Generalized Ax-Schanuel Property”. (K, D) is still a Hasse field with
constants field C; A and B are commutative algebraic groups defined over
C, and G := A×B.
A formal homomorphism f : A→ B still induces a pro-algebraic homomor-
phism Uf from UA to UB. Again, although there is no extension of the map
f to A(K) and B(K) in general, we still may speak of the HS-differential
equation of f , all the ingredients being present : Uf (lDA(x) = lDB(y). Its
solution set is still named Γf , a subgroup of G(K), type-definable in (K, D).
This amounts to say that we may state the “HS differential Ax-Schanuel
property”; in particular, it will have a proper meaning in characteristic p.

Definition 0.1 (HS-differential Ax-Schanuel Property). With the same no-
tations, assuming that f : A → B is a formal homomorphism, we say that
Γf , the solution set in K of the HS-differential equation of f , has the HS-
differential Ax-Schanuel property, if whenever (a, b) ∈ Γf and tdC(a, b) ≤ n,
then there are proper algebraic subgroups A0 < A and B0 < B defined over
C, such that a ∈ A0(K) + A(C) and b ∈ B0(K) + B(C).

Remark that we have not assumed that the characteristic of K is p. The
trick already mentionned allows to “transform”any derivation on a field into
a “Hasse-Schmidt derivation”; in characteristic zero, the HS-differential Ax-
Schanuel property is in this way exactly the classical Ax-Schanuel property,
so this is a true generalization.
In characteristic p however, the groups UGa and UGm are not isomorphic,
so there is no nontrivial formal homomorphism between Ga and Gm, and
the exponential map does not exist in this setting. Hence, the exponential
differential equation, which was the motivation for Ax’s theorem and its
successive generalizations, has no equivalent in Hasse fields in characteristic
p. So one must ask if certain other formal homomorphisms in characteristic
p have the HS-differential Ax-Schanuel property. Some candidates are f =∑∞

i=0 ciX
pi

on Ga (where the ci’s ∈ C), f = limn(X + 1)
Pn

i=0 aip
i − 1 on

Gm (where
∑∞

i=0 aip
i is any p-adic number), and a formal isomorphism f

between Gm and an ordinary elliptic curve E.
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