This is joint work with Tobias Kaiser and Jean-Philippe Rolin.
Let $\xi : S^2 \rightarrow TS^2$ be a real analytic vector field.

Definition

A cycle C of ξ is a **limit cycle** if C is contained in the (topological) closure of some non-compact trajectory of ξ.

Dulac’s Problem

ξ has finitely many limit cycles.

Ecalle and Il’yashenko independently found proofs of Dulac’s problem in the early 1990s, completing Dulac’s original strategy.
Assume ξ has infinitely many limit cycles. Then they must pile up towards a nonempty, compact subset Γ of S^2.

Definition

Γ is called a **limit periodic set** of ξ.

Dulac showed that Γ must be a **polycycle**, that is, a closed curve composed of finitely many singular points of ξ connected by trajectories.

It remains to show that the **Poincaré first-return map** near Γ has finitely many isolated fixed points.
If ξ is polynomial, then the number of its limit cycles has a finite upper bound that depends only on the degree of ξ.

To approach H16, one has to study not just the individual ξ, but the whole family ξ_ν of polynomial vector fields of a given degree. This leads to complications:

1. More complicated limit periodic sets.
2. Study families of Poincaré first-return maps.

H16 has a vaguely model-theoretic flavor, but no model-theoretic framework has been found to exploit this.
Definition

Γ ⊆ S^2 is a **limit periodic set** of the family ξ_ν if there are limit cycles C_i of ξ_ν_i such that ν_i → ν and (C_i) converges in the sense of Hausdorff to Γ.

Roussarie’s conjecture

Let Γ ⊆ S^2 be a limit periodic set of ξ_ν. Then there are n ∈ ℕ and open neighbourhoods U of Γ in S^2 and V of ν in the parameter space such that ξ_µ has at most n limit cycles contained in U, for all µ ∈ V.

A topological compactness argument shows that Roussarie’s conjecture implies H16.
Our hope

...is to prove Roussarie’s conjecture when Γ is a hyperbolic polycycle.

Definition

- A singularity p of ξ is **hyperbolic** if the linear part of ξ at p has two nonzero real eigenvalues of opposite signs.
- A polycycle of ξ is **hyperbolic** if each of its singularities is hyperbolic.

Naive approach: let Γ be a hyperbolic polycycle of ξ_0 and P_ν be the family of Poincaré first-return maps of ξ_ν near Γ, for ν near 0.

“Conjecture”

The expansion \mathbb{R}^{P_ν} of the real field by P_ν is o-minimal.
We assume 0 is a **hyperbolic** singularity of \(\xi \).

Let \(\gamma^- \) and \(\gamma^+ \) be two adjacent separating trajectories with limit point 0; we assume \(\gamma^- \) is incoming and \(\gamma^+ \) is outgoing.

We fix two segments \(\Lambda^- \) and \(\Lambda^+ \) transverse to \(\xi \) and equipped with analytic charts \(x \) and \(y \).

For some sufficiently small \(\epsilon > 0 \), we denote by \(g : (0, \epsilon) \rightarrow (0, \epsilon) \) the **transition map** of \(\xi \) from \(\Lambda^- \) to \(\Lambda^+ \).

Strategy

Prove that there exists an o-minimal expansion \(\mathcal{R} \) of \(\mathbb{R}_{an} \) in which all such transition maps are definable.
Theorem (Dulac and Ilyashenko)

Let g be a transition map of ξ near 0. Then there is a series
\[\hat{g} = p_0 X^{\nu_0} + \sum_{j=1}^{\infty} p_j(\log X)X^{\nu_j} \]
such that
\[g(e^z) \text{ extends analytically to a quadratic domain} \]
\[W = \left\{ z \in \mathbb{C} : \text{Re} \ z < r - C \sqrt{|\text{Im} \ z|} \right\} \text{ with } r \in \mathbb{R}, C > 0, \]
such that for every $n \geq 1$,
\[g(e^z) - p_0 e^{\nu_0 z} - \sum_{j=1}^{n} p_j(z) e^{\nu_j z} = o \left(e^{\nu_n \text{Re} \ z} \right) \]
as $\text{Re} \ z \to -\infty$ in W.

Patrick Speissegger

O-minimality and Hilbert's 16th problem
We call $g \in D_\log$ satisfying (*) an **Ilyashenko function**, and we let \mathcal{I}_\log be the set of all such germs.

Theorem (Ilyashenko)

1. If $g \in \mathcal{I}_\log$ is such that $\hat{g} = X$, then $g = x$ (*quasi-analyticity*).
2. \mathcal{I}_\log is closed under composition.

Corollary

Let Γ be a polycycle of ξ such that every vertex of Γ is a hyperbolic singularity of ξ. Then ξ has finitely many limit cycles near Γ.

Patrick Speissegger
O-minimality and Hilbert’s 16th problem
We let Q be the subset of I_{\log} consisting of all germs that do not contain log terms in their asymptotic expansions.

Theorem (1)

There is a model-complete and o-minimal expansion \mathbb{R}_Q of \mathbb{R}_{an} in which every germ in Q are definable. In particular, every transition map near a non-resonant hyperbolic singularity of ξ is definable in \mathbb{R}_Q.

What does this do for parametric families ξ_ν?

Proposition (2)

*Assume ξ_ν is an analytic unfolding of ξ_0 such that each ξ_ν has only non-resonant hyperbolic singularities. Then the family of transition maps near each singularity of ξ_ν is definable in \mathbb{R}_Q.***
Next goals

We are now trying to extend

- Theorem (1) to all transition maps near *elementary* singular points of a single vector field ξ;
- Proposition (2) to an analytic family ξ_ν of vector fields with only hyperbolic singularities.

For both these extensions, the main difficulty lies in

- defining corresponding Ilyashenko functions in several variables;
- understanding blowings-up for these functions, in order to obtain a normalization algorithm.