Géométrie et Théorie des Modèles

Année 2016 - 2017


Organisateurs : Zoé Chatzidakis, Raf Cluckers.
Pour recevoir le programme par e-mail, écrivez à : zchatzid_at_dma.ens.fr.
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici. Elles peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.
Les notes de quelques-uns des exposés sont disponibles.


Vendredi 4 novembre 2016. ENS, salle W.

Programme :

11h : Pierre Dèbes (Lille I), Perspectives sur le problème inverse de Galois
Les résultats dont je parlerai sont motivés par le Problème Inverse de Galois Régulier (PIGR):
        Montrer que tout groupe fini G est le groupe de Galois d'une extension galoisienne F/Q(T) avec Q algébriquement clos dans F.
Je présenterai deux types de résultats. J'expliquerai d'abord que certaines variantes fortes liées aux notions d'extensions génériques, d'extensions paramétriques et de type de ramification paramétriques ne sont pas vraies. Puis, je montrerai une conséquence forte du PIGR liée une conjecture de Malle sur le nombre d'extensions galoisiennes de Q de groupe donné et de discriminant borné.

14h15 : Elisabeth Bouscaren (Orsay), Orthogonalité et théorie des modèles des groupes de rang fini dans les preuves de Mordell-Lang pour les corps de fonctions - Orthogonality and model theory of finite rank groups in the proofs of Function Field Mordell-Lang
Dans cet exposé, nous essayerons d'expliquer l'utilisation de la théorie des modèles des groupes de rang fini et de la notion d'orthogonalité dans les preuves modèles théoriques de la conjecture de Mordell-Lang pour les corps de fonction, à la fois dans la preuve originelle de Hrushovski et dans des travaux plus récents sur le sujet (en commun avec Franck Benoist et Anand Pillay). Nous parlerons en particulier de l'utilisation du “Théorème du Socle” dans ces preuves.
In this talk, we will try to explain the use of the model-theory of finite rank groups and of the notion of orthogonality in the model theoretic proofs of the Mordell-Lang Conjecture for function fields, in Hrushovski's original proof as well as in other more recent work (joint with Franck Benoist and Anand PIllay). In particular we will talk about the use of the “Socle Theorem” in these proofs.
Notes

16h : Dugald Macpherson (Leeds), Cardinalities of definable sets in finite structures
I will discuss model-theoretic developments stemming from a theorem of Chatzidakis, van den Dries and Macintyre, which states that given a formula φ(x,y) in the language of rings, there are finitely many pairs (μ,d) (μ rational, d a natural number) such that for any finite field F_q and parameter a, the definable set φ(F_q,a) has size roughly μ q^d for one of these pairs (μ,d). A model-theoretic framework suggested by this was developed by Elwes, myself, and Steinhorn, with notions of an `asymptotic class' of finite structures, and `measurable' infinite structure: an ultraproduct of an asymptotic class is measurable (and in particular has supersimple finite rank theory).
I will discuss recent work with Anscombe, Steinhorn and Wolf on `multi-dimensional asymptotic classes' of finite structures and infinite `generalised measurable' structures which greatly extends this framework, to include classes of multi-sorted structures, which may have infinite rank ultraproducts, or even have ultraproducts with non-simple theory (though these ultraproducts can never have the strict order property). The key feature is the fixed bound, for each formula φ(x,y), on the number of approximate sizes of sets φ(M,a) as M ranges through a class of finite structures and the parameter a varies through M. The focus will be on naturally-arising examples.


Vendredi 9 décembre 2016. ENS, salle W. Programme :

11h : Arthur Forey (IMJ - PRG), Densité locale motivique et p-adique uniforme
Je présenterai un analogue motivique de la densité locale introduite par Kurdyka-Raby dans le cas réel et Cluckers-Comte-Loeser dans le cas p-adique. Celle-ci s'applique aux définissables dans une théorie de corps Henséliens modérée (au sens de Cluckers-Loeser), en caractéristique nulle et caractéristique résiduelle quelconque.
Comme dans les cas sus-cités, il existe un cône tangent distingué sur lequel on peut calculer la densité si on lui attache des multiplicités, qu'on définit en décomposant l'ensemble définissable étudié en graphes de fonctions (localement) 1-Lipschitziennes. Cela implique en particulier une version uniforme du théorème de Cluckers-Comte-Loeser sur la densité p-adique.

14h15 : Martin Hils (Münster), Théorie des modèles de variétés compactes complexes avec automorphisme
On peut développer la théorie des modèles des variétés compactes complexes (CCM) avec automorphisme générique en analogie avec ce qui a été fait pour les corps aux différences existentiellement clos, autrement dit pour la théorie ACFA, dans des travaux importants de Chatzidakis et Hrushovski, entre autres. La théorie (du premier ordre) correspondante CCMA est supersimple, et on a la trichotomie de Zilber pour les types “fini-dimensionnels” de rang SU 1.
Dans l'exposé, je vais présenter quelques résultats dans CCMA qui relèvent de la simplicité géométrique, et je vais discuter comment on peut traiter de systèmes dynamiques méromorphes dans ce cadre. Enfin, j'indiquerai pourquoi CCMA n'élimine pas les imaginaires, contrairement ce qui se passe dans ACFA.

16h : Christopher Voll (Bielefeld), Uniform analytic properties of representation zeta functions of groups
Representation zeta functions of groups are Dirichlet-type generating functions enumerating the groups' finite-dimensional irreducible complex representations, possibly up to suitable equivalence relations. Under favourable conditions, these zeta functions satisfy Euler products whose factors are indexed by the places of number fields. I will discuss how p-adic integrals can be used to study these Euler products and how this sometimes allows us to capture some key analytic properties of representation zeta functions of groups.


Vendredi 13 janvier 2017, ENS, salle W. Orateurs :

11h : Gal Binyamini (Weizmann Institute of Science), Wilkie's conjecture for restricted elementary functions
Let X be a set definable in some o-minimal structure. The Pila-Wilkie theorem (in its basic form) states that the number of rational points in the transcendental part of X grows sub-polynomially with the height of the points. The Wilkie conjecture stipulates that for sets definable in R_exp, one can sharpen this asymptotic to polylogarithmic.
I will describe a complex-analytic approach to the proof of the Pila-Wilkie theorem for subanalytic sets. I will then discuss how this approach leads to a proof of the “restricted Wilkie conjecture”, where we replace R_exp by the structure generated by the restrictions of exp and sin to the unit interval (both parts are joint work with Dmitry Novikov). If time permits I will discuss possible generalizations and applications.
Notes

14h15 : Jonathan Pila (Oxford), Some Zilber-Pink-type problems
I will discuss some problems which are analogous to, but formally not comprehended within, the Zilber-Pink conjecture, involving collections of “special subvarieties” connected with uniformization maps of suitable domains.

16h : Silvain Rideau (UC Berkeley), Imaginaires dans les corps valués avec opérateurs
Au début des années 2000, Haskell, Hrushovski and Macpherson ont décrit les ensembles interprétables dans un corps valué algébriquement clos à l'aide d'équivalents en plus grande dimension des boules. Plus précisément, ils ont prouvé l'élimination des imaginaires dans le language géométrique. Pendant la même période, l'intérêt des théoriciens des modèles pour les corps valués avec opérateurs s'est grandement développé. Les questions résolues pour ces structures tournent, pour la plupart, autour de l'élimination des quantificateurs et de la modération. Mais, au vu des résultats de Haskell, Hrushovski and Macpherson, il est tentant de vouloir aussi classifier les ensembles interprétables.
Dans cet exposé, je traiterai des deux exemples les mieux compris: la modèle complétion de Scanlon des corps valués munis d'une dérivation contractive et les corps valués séparablement clos de degré d'imperfection fini. En particulier, je montrerai comment l'élimination des imaginaires dans ces structures est liée à l'existence d'une base canonique pour les types définissables et comment la propriété d'indépendance (ou plutôt son absence) peut aider à contrôler ces bases canoniques.


Vendredi 10 février 2017, ENS salle W. Orateurs :

11h : Wouter Castryck (Lille/Leuven), Geometric invariants that are encoded in the Newton polygon
Let k be a field and let P be a lattice polygon, i.e. the convex hull in R^2 of finitely many non-collinear points of Z^2. Let C/k be the algebraic curve defined by a sufficiently generic Laurent polynomial that is supported on P. A result due to Khovanskii states that the geometric genus of C equals the number of Z^2-valued points that are contained in the interior of P. In this talk we will give an overview of various other curve invariants that can be told by looking at the combinatorics of P, such as the gonality, the Clifford index, the Clifford dimension, the scrollar invariants associated to a gonality pencil, and in some special cases the canonical graded Betti numbers. This will cover joint work with Filip Cools, Jeroen Demeyer and Alexander Lemmens.

14h15 : David Evans (Imperial), Determining finite simple images of finitely presented groups
I will discuss joint work with Martin Bridson and Martin Liebeck which addresses the question: for which collections of finite simple groups does there exist an algorithm that determines the images of an arbitrary finitely presented group that lie in the collection? We prove both positive and negative results. For a collection of finite simple groups that contains infinitely many alternating groups, or contains classical groups of unbounded dimensions, we prove that there is no such algorithm. On the other hand, for a collection of simple groups of fixed Lie type we obtain positive results by using the model theory of finite fields.

16h : Eva Leenknegt (Leuven), Cell Decomposition for P-minimal structures: a story
P-minimality is a concept that was developed by Haskell and Macpherson as a p-adic equivalent for o-minimality. For o-minimality, the cell decomposition theorem is probably one of the most powerful tools, so it is quite a natural question to ask for a p-adic equivalent of this.
In this talk I would like to give an overview of the development of cell decomposition in the p-adic context, with an emphasis on how questions regarding the existence of definable skolem functions have complicated things. The idea of p-adic cell decomposition was first developed by Denef, for p-adic semi-algebraic structures, as a tool to answer certain questions regarding quantifier elimination, rationality and p-adic integration. This first version eventually resulted in a cell decomposition theorem for P-minimal structures. This theorem, proven by Mourgues, was however dependent on the existence of definable Skolem functions. The second part of the talk will focus a bit more on Skolem functions, and sketch a generalized version of the Denef-Mourgues theorem that does not rely on the existence of such functions, by introducing a notion of clustered cells. We will explain the notion, give an informal sketch of the proof, and compare with other versions of cell decomposition.


Vendredi 10 mars, ENS, salle W. Orateurs :

11h : Evelina Viada (Göttingen), Rational points on families of curves
The TAC (torsion anomalous conjecture) states that for an irreducible variety V embedded transversaly in an abelian variety A there are only finitely many maximal V-torsion anomalous varieties. It is well know that the TAC implies the Mordell-Lang conjecture. S. Checcole, F. Veneziano and myself were trying to prove some new cases of the TAC. In this process we realised that some methods could be made not only effective but even explicit. So we analysed the implication of this explicit methods on the Mordell Conjeture. Namely: can we make the Mordell Conjecture explicit for some new families of curves and so determine all the rational points on these curves? Of course we started with the easiest situation, that is curves in ExE for E an elliptic curve. We eventually could give some new families of curves of growing genus for which we can determine all the rational points. I will explain the difficulties and the ingredients of this result. I will then discuss the generalisations of the method and also its limits.
Notes de l'exposé.

14h15 : Patrick Speissegger (Konstanz/McMaster), Quasianalytic Ilyashenko algebras
In 1923, Dulac published a proof of the claim that every real analytic vector field on the plane has only finitely many limit cycles (now known as Dulac's Problem). In the mid-1990s, Ilyashenko completed Dulac's proof; his completion rests on the construction of a quasianalytic class of functions. Unfortunately, this class has very few known closure properties. For various reasons I will explain, we are interested in constructing a larger quasianalytic class that is also a Hardy field. This can be achieved using Ilyashenko's idea of superexact asymptotic expansion. (Joint work with Zeinab Galal and Tobias Kaiser)
Notes de l'exposé.

16h : Anne Moreau (Lille), Satellites of spherical subgroups and Poincaré polynomials
Let G be a connected reductive group over C. One can associate with every spherical homogeneous space G/H its lattice of weights X^*(G/H) and a subset S of M of linearly independent primitive lattice vectors which are called the spherical roots. For any subset I of S we define, up to conjugation, a spherical subgroup H_I in G such that dim H_I = dim H and X^*(G/H_I) = X^*(G/H). We call the subgroups H_I the satellites of the spherical subgroup H. Our interest in satellites H_I is motivated by the space of arcs of the spherical homogeneous space G/H.
We show a close relation between the Poincaré polynomials of the two spherical homogeneous spaces G/H and G/H_I.
All of this is useful for the computation of the stringy E-function of Q-Gorenstein spherical embeddings.
The talk is based on joint works with Victor Batyrev.


Vendredi 28 avril, ENS Salle W. Orateurs :

11h : François Loeser (UPMC), Un théorème d'Ax-Lindemann non-archimédien
On présentera un résultat de type Ax-Lindemann pour les produits de courbes de Mumford sur un corps p-adique. Notre preuve reprend en l'adaptant les grandes lignes de l'approche de Pila dans le cas archimédien. En particulier nous utilisons un théorème de Pila-Wilkie p-adique obtenu avec R. Cluckers et G. Comte. Il s'agit d'un travail en commun avec A. Chambert-Loir.

14h15 : Luck Darnière (Angers), Triangulation des ensembles semi-algébriques p-adiques
On sait que les ensembles semi-algébriques p-adiques admettent une décomposition cellulaire semblable à celle des semi-algébriques réels (Denef 1984). On sait aussi les classifier à bijection semi-algébrique près (Cluckers 2001), mais pas à homéomorphismes semi-algébriques près. En introduisant une notion appropriée de simplexe sur les corps p-adiquement clos, on peut montrer que tout ensemble semi-algébrique p-adique est semi-algébriquement homéomorphe à un complexe simplicial p-adique, exactement comme dans le cas réel clos. C'est ce résultat récent de “triangulation p-adique” que je tâcherai de présenter, avec ses applications les plus directes (existence de découpages avec contraintes aux bords, existence de rétractions, etc).
Notes de l'exposé.

16h : Omid Amini (ENS), Séries linéaires limites et applications
Je présente un formalisme combinatoire pour l'étude des dégénérescences des séries linéaires dans une famille de courbes algébriques. J'en déduis quelques applications dont notamment l'équirépartition selon la mesure admissible de Zhang des points de ramification des fibrés en droite sur les courbes de Berkovich, un analogue non-archimédien du théorème de Mumford-Neeman. Je discuterai aussi la question de la convergence de la mesure d'Arakelov vers la mesure de Zhang dans une famille de surfaces de Riemann.


Vendredi 19 mai, ENS, salle W. Orateurs prévus :

11h : Chris Miller (Ohio State), Beyond o-minimality, and why
O-minimal structures on the real field have many desirable properties. As examples:
    (a) Hausdorff (and even packing) dimension agrees with topological dimension on locally closed definable sets.
    (b) Locally closed definable sets have few rational points (in the sense of the Pila-Wilkie Theorem).
    (c) For each positive integer p, every closed definable set is the zero set of a definable C^p function.
    (d) Connected components of definable sets are definable.
But to what extent is o-minimality necessary for these properties to hold? I will discuss this question, and illustrate via examples as to why one might care about answers.

14h15 : Ayhan Günaydin (Bogazici), Tame Expansions of o-minimal Structures
Expanding a model theoretically “tame” structure in a way that it stays “tame” has been a theme in the recent years. In the first part of this talk, we present a history of work done in that frame. Then we focus on the case of expansions of o-minimal structures by a unary predicate. There is a dividing line according to whether the predicate is dense or discrete; even though the results obtained are similar, there is an enormous difference in the techniques used. We shall present some of the results obtained in the dense case. Starting from a set of abstract axioms, we obtain a decomposition theorem for definable sets and a local structure theorem for definable groups.
The abstract axioms mentioned above are “smallness”, “o-minimal open core” and “quantifier elimination up to existential formulas”. We shall illustrate a proof of the fact that the first two imply “quantifier elimination up to bounded formulas”, which is a weak form of the last axiom and we give reasons why it is really weaker than that axiom.
(Joint work with P. Eleftheriou and P. Hieronymi)

16h : George Comte (Chambéry), Zéros et points rationnels des fonctions analytiques ou oscillant.
Compter les points rationnels de hauteur bornée dans le graphe d'une fonction, ou plus généralement d'une courbe (plane), se ramène à estimer le nombre Z_d de points d'intersection de cette courbe avec un ensemble algébrique de degré d donné. J'expliquerai
     - d'une part comment on peut produire des familles de fonctions analytiques sur [0,1] telle que Z_d est polynomialement borné en d, et comment une telle borne assure que le graphe d'une telle fonction recèle moins de logα(T) points rationnels de hauteur < T,
     - d'autre part comment on peut traiter le cas de certaines courbes oscillant (ie non o-minimales) pour obtenir encore une borne du type logα(T).
Il s'agit de travaux en commun avec Y. Yomdin d'une part et C. Miller d'autre part.

Notes.


Programme des séances passées : 2006-07, 2007-08, 2008-09, 2009-10, 2010-11, 2011-12, 2012-13, 2013-14, 2014-15, 2015-16.
Retour à la page principale.