Géométrie et Théorie des Modèles

Année 2017 - 2018


Organisateurs : Zoé Chatzidakis, Raf Cluckers.
Pour recevoir le programme par e-mail, écrivez à : zchatzid_at_dma.ens.fr.
Pour les personnes ne connaissant pas du tout de théorie des modèles, des notes introduisant les notions de base (formules, ensembles définissables, théorème de compacité, etc.) sont disponibles ici. Elles peuvent aussi consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed., Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.
Les notes de quelques-uns des exposés sont disponibles.


Vendredi 13 octobre, ENS, salle W. Orateurs :

11h : Itaï Ben Yaacov (Lyon 1), Corps globalement valués
Dans un travail en commun avec E Hrushovski, nous étudions les corps globalement valués, qui sont une abstraction des corps de nombres, de fonctions, ou autres dans lesquels la formule du produit est vérifiée. Les questions habituelles de la théorie des modèles, telle que l'existence d'une modèle-compagne ou encore sa stabilité, nous mènent vers de nouvelles questions de nature plutôt géométrique.
Je vais expliquer quelques avancées récentes dans ce sens, où une analyse géométrique locale nous permet de déduire des propriété globales dans un corps globalement valués.

14h15 : Boris Zilber (Oxford), Approximation, domination and integration
The talk will focus on results of two related strands of research undertaken by the speaker. The first is a model of quantum mechanics based on the idea of 'structural approximation'. The earlier paper 'The semantics of the canonical commutation relations' (arxiv) established a method of calculation, essentially integration, for quantum mechanics with quadratic Hamiltonians. Currently, we worked out a (model-theoretic) formalism for the method, which allows us to perform more subtle calculations, in particular, we prove that our path integral calculation produce correct formula for quadratic Hamiltonians avoiding non-conventional limits used by physicists. Then we focus on the model-theoretic analysis of the notion of structural approximation and show that it can be seen as a positive model theory version of the theory of measurable structures, compact domination and integration (p-adic and adelic).
Notes de l'exposé

16h : Immi Halupczok (Düsseldorf), Un nouvel analogue de l'o-minimalité dans des corps valués
Pour les corps réel clos, la notion d'o-minimalité a eu un énorme succès; il s'agit d'une condition très simple à une expansion du langage des corps, qui implique que les ensembles définissables se comportent très bien d'un point de vue géométrique. Il existe plusieurs adaptations de cette notion aux corps valués (p.ex. p-mininalité, C-minimalité, B-minimalité, v-minimalité), mais la plupart de ces adaptations (a) s'appliquent seulement à une classe de corps valués assez restrictive, (b) elles n'impliquent pas tout ce qu'on voudrait, et/ou (c) elles sont définies de manière nettement plus compliquée. Dans cet exposé, je vais présenter une nouvelle notion qui n'a pas les problèmes (a) et (b) et qui a une définition raisonnablement simple.


Vendredi 17 novembre, ENS, salle W. Orateurs prévus :

11h : Olivier Benoist (Strasbourg), Sur les polynômes positifs qui sont sommes de peu de carrés
Artin a résolu le 17ème problème de Hilbert : un polynôme réel positif en n variables est somme de carrés de fractions rationnelles. Pfister a amélioré ce résultat en démontrant qu'il est somme de 2^n carrés. Décider si la borne 2^n de Pfister est optimale est un problème ouvert si n>2. Nous expliquerons que cette borne peut être améliorée en petit degré et, en deux variables, pour un ensemble dense de polynômes positifs.

14h15 : Dmitry Sustretov (MPIM), Incidence systems on Cartesian powers of algebraic curves
The classical theory of abstract projective geometries establishes an equivalence between axiomatically defined incidence systems of points and lines and projective planes defined over a field. Zilber's Restricted Trichotomy conjecture in dimension one is a generalization of this statement in a sense, with lines replaced by algebraic curves; it implies that a non-locally modular strongly minimal structure with the universe an algebraic curve over an algebraically closed field and basic relations constructible subsets of Cartesian powers of the curve interprets an infinite field. The talk will present the basic structure of the proof of the conjecture, and outline its application, by Zilber, to Torreli-type theorem for curves over finite fields of Bogomolov, Korotiaev and Tschinkel. Joint work with Assaf Hasson.

16h : Alex Wilkie (Oxford), Quasi-minimal expansions of the complex field
I discuss a back-and-forth technique for proving that in certain expansions of the complex field every L_{∞, ω}-definable subset of ℂ is either countable or co-countable. Some successes of the method will also be discussed.


Programme des séances passées : 2006-07, 2007-08, 2008-09, 2009-10, 2010-11, 2011-12, 2012-13, 2013-14, 2014-15, 2015-16, 2016-17.
Retour à la page principale.